

 The Report is Generated by DrillBit Plagiarism Detection Software

 Submission Information

 Result Information

 Exclude Information Database Selection

 Author Name Anuj Das

 Title OS_SLM

 Paper/Submission ID 2997011

 Submitted by librarian.adbu@gmail.com

 Submission Date 2025-01-20 13:57:27

 Total Pages, Total Words 105, 42599

 Document type Others

 Similarity 10 %
1 10 20 30 40 50 60 70 80 90

Sources Type
Student
Paper
0.77%

Journal/
Publicatio

n 3.7%
Internet
5.54%

Report Content

Words <
5, 0.56%

Quotes
0.16%

 Quotes Excluded Language English

 References/Bibliography Excluded Student Papers Yes

 Source: Excluded < 5 Words Excluded Journals & publishers Yes

 Excluded Source 0 % Internet or Web Yes

 Excluded Phrases Not Excluded Institution Repository Yes

 A Unique QR Code use to View/Download/Share Pdf File

DrillBit Similarity Report

 SIMILARITY % MATCHED SOURCES GRADE

LOCATION MATCHED DOMAIN % SOURCE TYPE

10 126 A

A-Satisfactory (0-10%)
B-Upgrade (11-40%)
C-Poor (41-60%)
D-Unacceptable (61-100%)

1 mu.ac.in 1 Publication

2 drive.uqu.edu.sa 1 Publication

3 www.freecodecamp.org <1 Internet Data

4 www.studocu.com <1 Internet Data

5 moam.info <1 Internet Data

6 www.scaler.com <1 Internet Data

7 pdfcookie.com <1 Internet Data

8 www.harrykar.blogspot.com <1 Internet Data

9 moam.info <1 Internet Data

10 www.studysmarter.co.uk <1 Internet Data

11 www.studocu.com <1 Internet Data

12 A framework for application partitioning using trusted execution

environments by Atamli-Reineh-2017
 <1 Publication

13 epdf.pub <1 Internet Data

14 rajteachers.com <1 Publication

https://mu.ac.in/wp-content/uploads/2020/12/Operating-System.pdf
https://drive.uqu.edu.sa/_/mskhayat/files/MySubjects/2017SS%20Operating%20Systems/Abraham%20Silberschatz-Operating%20System%20Concepts%20(9th,2012_12).pdf
https://www.freecodecamp.org/news/file-systems-architecture-explained/
https://www.studocu.com/row/document/university-of-chittagong/operating-system/notes-on-chapter-6/76475113
https://moam.info/deadlock-prevention-and-deadlock-avoidance-in-eprintsiisc_5b8b6a5e097c47bd688b464a.html
https://www.scaler.com/topics/process-management-in-operating-system/
https://pdfcookie.com/documents/effective-cybersecurity-a-guide-to-using-best-practices-and-standardspdf-rvr985rneevo
http://www.harrykar.blogspot.com
https://moam.info/tibco-activematrix-businessworks-process-design_5a226f7a1723dda07d8f9f1a.html
https://www.studysmarter.co.uk/explanations/computer-science/computer-systems/memory-management/
https://www.studocu.com/row/document/university-of-chittagong/operating-system/notes-on-chapter-6/76475113
https://dx.doi.org/10.1002/cpe.4130
https://dx.doi.org/10.1002/cpe.4130
https://epdf.pub/malicious-cryptography-exposing-cryptovirology.html
https://rajteachers.com/data/RSCIT/Computer-Knowledge.pdf

15 Submitted to U-Next Learning on 2024-07-09 21-53 2095965 <1 Student Paper

16 Submitted to U-Next Learning on 2024-06-20 19-40 2024431 <1 Student Paper

17 Submitted to U-Next Learning on 2024-07-16 06-28 2120162 <1 Student Paper

18 Enigma architectural and operating system support for reducing the

impact of ad by Zhang-2010
 <1 Publication

19 pdfcookie.com <1 Internet Data

20 springeropen.com <1 Internet Data

21 mu.ac.in <1 Publication

22 www.geeksforgeeks.org <1 Internet Data

23 www.mdpi.com <1 Internet Data

24 moam.info <1 Internet Data

25 Thesis submitted to shodhganga - shodhganga.inflibnet.ac.in <1 Publication

26 www.kiteworks.com <1 Internet Data

27 www.geeksforgeeks.org <1 Internet Data

28 www.progressive.in <1 Internet Data

29 cloudbus.org <1 Publication

30 eng.libretexts.org <1 Internet Data

31 pdfcookie.com <1 Internet Data

32 www.ukessays.com <1 Internet Data

33 qdoc.tips <1 Internet Data

https://dx.doi.org/10.1145/1810085.1810109
https://dx.doi.org/10.1145/1810085.1810109
https://pdfcookie.com/documents/operating-systems-three-easy-pieces-j267o1wrypl4
https://springeropen.com/articles/10.1186/s13673-020-00224-y/metrics
https://mu.ac.in/wp-content/uploads/2021/06/USIT103-Operating-System.pdf
https://www.geeksforgeeks.org/random-access-memory-ram/
https://www.mdpi.com/1424-8220/21/2/446
https://moam.info/modern-operating-systems-3e-2007pdf-iit-qau_59d6b6b41723ddb6d044fd0f.html
https://sg.inflibnet.ac.in/bitstream/10603/254833/10/10_chapter4.pdf
https://www.kiteworks.com/risk-compliance-glossary/sql-injection-attack/
https://www.geeksforgeeks.org/what-is-register-memory/
https://www.progressive.in/blog/an-in-depth-guide-to-database-management/
http://cloudbus.org/students/Maria-MastersProject2011.pdf
https://eng.libretexts.org/Bookshelves/Computer_Science/Programming_and_Computation_Fundamentals/High_Performance_Computing_(Severance)/03%3A_Programming_and_Tuning_Software/3.04%3A_Loop_Optimizations
https://pdfcookie.com/documents/operating-system-mcqs-x20gy84ndyl3
https://www.ukessays.com/essays/computer-science/real-time-operating-systems-computer-science-essay.php
https://qdoc.tips/download/common-bcch-control-pdf-free.html

34 Submitted to U-Next Learning on 2024-11-21 15-52 2558162 <1 Student Paper

35 fastercapital.com <1 Internet Data

36 csit.ust.edu.sd <1 Publication

37 Thesis submitted to dspace.mit.edu <1 Publication

38 docobook.com <1 Internet Data

39 Submitted to U-Next Learning on 2024-12-07 19-26 2724597 <1 Student Paper

40 Enigma architectural and operating system support for reducing the

impact of ad by Zhang-2010
 <1 Publication

41 moam.info <1 Internet Data

42 Addressing covert termination and timing channels in concurrent infor,

by Stefan, Deian Russ- 2012
 <1 Publication

43 docplayer.net <1 Internet Data

44 rajteachers.com <1 Publication

45 www.freepatentsonline.com <1 Internet Data

46 Instrumentation of Time-Shared Systems by Shemer-1972 <1 Publication

47 www.nap.edu <1 Internet Data

48 aloa.co <1 Internet Data

49 pt.slideshare.net <1 Internet Data

50 www.progressive.in <1 Internet Data

51 www.studysmarter.co.uk <1 Internet Data

52 www.freepatentsonline.com <1 Internet Data

https://fastercapital.com/topics/promoting-fairness-and-justice-in-the-workplace.html
https://csit.ust.edu.sd/files/2018/09/Linux-with-Operating-System-Concepts-Fox-Richard-CRC-Press-2014.pdf
http://dspace.mit.edu/bitstream/1721.1/29409/2/56138197-MIT.pdf
https://docobook.com/queue/nist-cybersecurity-framework-csf-d0awsstaticcom.html
https://dx.doi.org/10.1145/1810085.1810109
https://dx.doi.org/10.1145/1810085.1810109
https://moam.info/the-contemporary-internet-national-and-cross_5c496083097c47eb178b469a.html
https://dx.doi.org/10.1145/2398856.2364557
https://dx.doi.org/10.1145/2398856.2364557
http://docplayer.net/18157044-Evaluation-of-scheduling-algorithms-using-video-and-voice-applications-in-cloud-computing.html
https://rajteachers.com/data/RSCIT/Computer-Knowledge.pdf
https://www.freepatentsonline.com/y2009/0249479.html
https://dx.doi.org/10.1109/c-m.1972.216942
https://www.nap.edu/read/11449/chapter/6
https://aloa.co/blog/explained-sql-database-fundamentals-for-beginners
https://pt.slideshare.net/ajal4u/embedded-os-47783000
https://www.progressive.in/blog/an-in-depth-guide-to-database-management/
https://www.studysmarter.co.uk/explanations/computer-science/computer-systems/memory-management/
https://www.freepatentsonline.com/y2007/0299887.html

53 citeseerx.ist.psu.edu <1 Internet Data

54 docplayer.net <1 Internet Data

55 Medium-Term Scheduler as a Solution for the Thrashing Effect, by

Reuven, M.- 2005
 <1 Publication

56 ShieldNVM An Efficient and Fast Recoverable System for Secure Non-

Volatile Memo by Yang-2020
 <1 Publication

57 docshare.tips <1 Internet Data

58 epdf.pub <1 Internet Data

59 Submitted to U-Next Learning on 2024-07-15 16-45 2118036 <1 Student Paper

60 IEEE 2017 IEEE International Test Conference (ITC)- Fort Worth, TX,

by Ding, Xiaoan Liang- 2017
 <1 Publication

61 Architecture of parallel management kernel for PIE64 by Yasu-1994 <1 Publication

62 Diffusion properties of aqueous slurries in evaporative spray drying o by

Slowikowski-2014
 <1 Publication

63 springeropen.com <1 Internet Data

64 www.dx.doi.org <1 Publication

65 www.jaroeducation.com <1 Internet Data

66 www.sciencepubco.com <1 Publication

67 IEEE 215 IEEE International Conference on Cloud Engineering (IC2E)

by
 <1 Publication

68 www.ridge.co <1 Internet Data

69 Analytical procedures for diagnosis of trace element disorders by G-1983 <1 Publication

https://citeseerx.ist.psu.edu/showciting?doi=10.1.1.106.3994&sort=cite&start=10
https://www.docplayer.net/11929166-Kolin-kolistelut-koli-calling-2004.html
https://dx.doi.org/10.1093/comjnl/bxl001
https://dx.doi.org/10.1093/comjnl/bxl001
https://dx.doi.org/10.1145/3381835
https://dx.doi.org/10.1145/3381835
https://docshare.tips/a-comparative-analysis-of-dynamic-scheduling-algorithms-versus-the-round-robin-scheduling-algorithm_5894a85db6d87f89368b4c7e.html
https://epdf.pub/developers-guide-to-web-application-security29735.html
https://dx.doi.org/10.1109/TEST.2017.8242065
https://dx.doi.org/10.1109/TEST.2017.8242065
https://dx.doi.org/10.1016/0167-739x(94)90049-3
https://dx.doi.org/10.1007/s00231-014-1329-x
https://dx.doi.org/10.1007/s00231-014-1329-x
https://springeropen.com/articles/10.1186/s13673-020-00224-y/metrics
https://dx.doi.org/10.1177/00031224211024525
https://www.jaroeducation.com/blog/demystifying-operating-systems/
https://www.sciencepubco.com/index.php/JACST/article/download/3754/1489
https://dx.doi.org/10.1109/IC2E.2015.78
https://dx.doi.org/10.1109/IC2E.2015.78
https://www.ridge.co/blog/cloud-computing-in-healthcare/
https://dx.doi.org/10.1007/bf01811316

70 claim-h2020project.eu <1 Publication

71 Cloud Gaming Understanding the Support from Advanced Virtualization

and Hardwar by Shea-2015
 <1 Publication

72 Impact of aging on stress-responsive neuroendocrine systems by War-

2001
 <1 Publication

73 Knowledge-based visual part identification and location in a robot wor by

KD-1988
 <1 Publication

74 sanonofresafety.files.wordpress.com <1 Publication

75 springeropen.com <1 Internet Data

76 www.freepatentsonline.com <1 Internet Data

77 biomedcentral.com <1 Internet Data

78 coehuman.uodiyala.edu.iq <1 Publication

79 en.wikipedia.org <1 Internet Data

80 hrcak.srce.hr <1 Internet Data

81 infonomics-society.org <1 Publication

82 journal.unjani.ac.id <1 Internet Data

83 Scalable and Distributed Methods for Entity Matching, Consolidation and

Disambig by Hogan-2012
 <1 Publication

84 Submitted to U-Next Learning on 2025-01-07 21-02 2952759 <1 Student Paper

85 www.freepatentsonline.com <1 Internet Data

86 www.geeksforgeeks.org <1 Internet Data

https://www.claim-h2020project.eu/wp-content/uploads/2020/11/FinalThesis_ElkinaEvgeniya.pdf
https://dx.doi.org/10.1109/tcsvt.2015.2450172
https://dx.doi.org/10.1109/tcsvt.2015.2450172
https://dx.doi.org/10.1016/s0047-6374(01)00250-0
https://dx.doi.org/10.1016/s0047-6374(01)00250-0
https://dx.doi.org/10.1016/0890-6955(88)90015-6
https://dx.doi.org/10.1016/0890-6955(88)90015-6
https://sanonofresafety.files.wordpress.com/2020/06/bulletin_2005_2-en.pdf
https://springeropen.com/articles/10.1186/s13673-020-00224-y/metrics
https://www.freepatentsonline.com/y2012/0165102.html
https://biomedcentral.com//biologydirect.biomedcentral.com/articles/10.1186/s13062-019-0236-y
https://coehuman.uodiyala.edu.iq/uploads/Coehuman%20library%20pdf/English%20library%D9%83%D8%AA%D8%A8%20%D8%A7%D9%84%D8%A7%D9%86%D9%83%D9%84%D9%8A%D8%B2%D9%8A/linguistics/Linguistic_Theory_-_the_discourse_of_fundamental_work.pdf
https://en.wikipedia.org/w/index.php?title=Template:Merge&action=info
https://hrcak.srce.hr/index.php/hr/clanak/321156
https://infonomics-society.org/wp-content/uploads/ijisr/published-papers/volume-3-2013/Securing-Files-in-the-Cloud.pdf
https://journals.lww.com/jasn/00001751-201611000-00007.fulltext
https://dx.doi.org/10.2139/ssrn.3198933
https://dx.doi.org/10.2139/ssrn.3198933
https://www.freepatentsonline.com/y2003/0041110.html
https://www.geeksforgeeks.org/interrupts-8085-microprocessor/

87 IEEE 2019 IEEE International Conference on Big Knowledge (ICBK) -

Be
 <1 Publication

88 ijceronline.com <1 Publication

89 rowkish.files.wordpress.com <1 Publication

90 Submitted to U-Next Learning on 2024-07-09 19-08 2095541 <1 Student Paper

91 The College of Nanoscale Science and Engineering a 21st century

paradigm for na by Liehr-2012
 <1 Publication

92 www.trustradius.com <1 Internet Data

93 arxiv.org <1 Publication

94 arxiv.org <1 Publication

95 Assessing the Reliability of Computer Software and Computer Networks

An Opportu by Barlow-1985
 <1 Publication

96 dochero.tips <1 Internet Data

97 ijcsit.com <1 Publication

98 qdoc.tips <1 Internet Data

99 Trypanosoma brucei ATR Links DNA Damage Signaling during

Antigenic Variation wit by Black-2020
 <1 Publication

100 www.analyticsvidhya.com <1 Internet Data

101 www.birlasoft.com <1 Internet Data

102 www.doaj.org <1 Publication

103 www.freepatentsonline.com <1 Internet Data

104 www.ibm.com <1 Publication

https://dx.doi.org/10.1109/ICBK.2019.00009
https://dx.doi.org/10.1109/ICBK.2019.00009
http://ijceronline.com/papers/Vol2_issue3/AC023790794.pdf
https://rowkish.files.wordpress.com/2019/04/psychology-the-science-of-mind-and-behavior-4th-ed.-m.-passer-et.-al.-mcgraw-hill-2008-bbs.pdf
https://dx.doi.org/10.1515/ntrev-2012-0022
https://dx.doi.org/10.1515/ntrev-2012-0022
https://www.trustradius.com/products/dataloader-io/reviews
https://arxiv.org/pdf/2305.17473
https://arxiv.org/pdf/2112.08988
https://dx.doi.org/10.1080/00031305.1985.10479401
https://dx.doi.org/10.1080/00031305.1985.10479401
https://dochero.tips/extending-vsg-vega-scene-graph.html
http://ijcsit.com/docs/Volume%205/vol5issue02/ijcsit20140502218.pdf
https://qdoc.tips/ccb-mdm-implementation-guide-2-pdf-free.html
https://dx.doi.org/10.1016/j.celrep.2019.12.049
https://dx.doi.org/10.1016/j.celrep.2019.12.049
https://www.analyticsvidhya.com/blog/2021/07/all-you-need-to-know-about-polynomial-regression/
https://www.birlasoft.com/articles/technological-solutions-to-tackle-supply-chain-disruptions
https://www.mdpi.com/2072-4292/11/5/596/pdf
https://www.freepatentsonline.com/y2005/0257000.html
https://www.ibm.com/docs/linuxonibm/liabj/RHEL_5_HLD.pdf

105 Towards Efficient Task Placement Selection on 2D Reconfigurable

Devices by Wang-2013
 <1 Publication

106 Towards Efficient Task Placement Selection on 2D Reconfigurable

Devices by Wang-2013
 <1 Publication

107 www.freepatentsonline.com <1 Internet Data

108 docobook.com <1 Internet Data

109 docplayer.net <1 Internet Data

110 docplayer.net <1 Internet Data

111 docplayer.net <1 Internet Data

112 docplayer.net <1 Internet Data

113 docplayer.net <1 Internet Data

114 ejournal.upnvj.ac.id <1 Internet Data

115 fastercapital.com <1 Internet Data

116 IEEE 2012 26th Brazilian Symposium on Software Engineering (SBES) -

by
 <1 Publication

117 msphere.asm.org <1 Publication

118 On the design of stream pumping engines for scalable video-on-demand

systems by Chiung-Shie-1997
 <1 Publication

119 recentscientific.com <1 Publication

120 researchspace.ukzn.ac.zajspui <1 Internet Data

121 Subexponential concurrent constraint programming by Olarte-2015 <1 Publication

122 Submitted to Devi Ahilya Vishwavidyalaya on 2024-11-22 17-33 <1 Student Paper

https://dx.doi.org/10.4028/www.scientific.net/AMR.850-851.965
https://dx.doi.org/10.4028/www.scientific.net/AMR.850-851.965
https://dx.doi.org/10.4028/www.scientific.net/AMR.850-851.965
https://dx.doi.org/10.4028/www.scientific.net/AMR.850-851.965
https://www.freepatentsonline.com/y2002/0181131.html
https://docobook.com/queue/regression-logistique-modelisation-des-variables-cel-hal.html
https://www.docplayer.net/8091546-Analysis-of-job-scheduling-algorithms-in-cloud-computing.html
https://www.docplayer.net/12493499-Ibm-analytics-prepare-and-maintain-your-data.html
http://docplayer.net/12934845-Automatic-discovery-of-parasitic-malware.html
http://docplayer.net/15498626-Usb-undermining-security-barriers.html
https://docplayer.net/6437006-Periodic-load-balancing.html
https://www.insurancejournal.com/news/southcentral/2024/10/02/795415.htm?print
https://fastercapital.com/keyword/seamless-secure-transactions.html
https://dx.doi.org/10.1109/SBES.2012.17
https://dx.doi.org/10.1109/SBES.2012.17
https://msphere.asm.org/content/msph/3/3/e00225-18.full.pdf
https://dx.doi.org/10.1109/30.628644
https://dx.doi.org/10.1109/30.628644
http://recentscientific.com/sites/default/files/10509-A-2018.pdf
https://researchspace.ukzn.ac.za/handle/10413/3663?show=full
https://dx.doi.org/10.1016/j.tcs.2015.06.031

123 Submitted to U-Next Learning on 2024-07-15 16-48 2118115 <1 Student Paper

124 www.hydropoint.com <1 Internet Data

125 www.norclub.com <1 Internet Data

126 IEEE 2014 IEEE International Conference on Information and

Automatio by
 <1 Publication

https://www.hydropoint.com/blog/what-is-smart-irrigation/
https://www.norclub.com/handbook-on-loss-of-hire-insurance
https://dx.doi.org/10.1109/ICInfA.2014.6932772
https://dx.doi.org/10.1109/ICInfA.2014.6932772

Unit 1: Introduction to Operating Systems

1.1 Introduction to OS as an Extended Machine and Resource Manager
21

Operating system (OS) is a system software. System software is a software that operates the hardware
of a computer and provides platform for running the application software. Operating system acts as
the intermediary between application software and hardware of a computer. The primary goal of an
operating system is to provide ease of access to the users and provide high throughput for the tasks
that are executed by the CPU. The following figure gives the flow chart for the architecture of a
computer system

1.2 Key OS Concepts

Primary Functions of an Operating System:

1. Resource Management: Resource management in an Operating System (OS) refers to the way
an OS manages the hardware resources of a computer (such as CPU, memory, storage, and
I/O devices) to ensure efficient and fair use among multiple programs or users. The goal is to
optimize the performance of the system, provide isolation and protection between processes,
and ensure that all running tasks have the resources they need without interference.

2. Process Management: A process is a program in execution. Process management is the act of
1111

creating, scheduling, coordinating and terminating a process for improving throughput of a
computer system.

3. Memory Management: Memory management in an operating system (OS) refers to the way
an OS handles the computer's memory resources, ensuring that each process has sufficient
memory to execute and that memory is allocated efficiently and safely among various
processes.

4. File System Management: Operating System is responsible for organizing, storing, retrieving,
1111

and managing data on storage devices such as hard drives, SSDs, and network storage. It
ensures files are stored in a structured and accessible manner.

5. Security and Access Control: The OS is responsible for securing sensitive data and protecting
the computer system from unauthorized user access. So, the OS is responsible for
authentication, authorization, encryption and malware protection of the computer system.

The functions of the Operating System given here will be discussed in details in the later chapters.
3232

1.3 Evolution of Operating Systems

1. Serial Processing: In serial processing tasks were executed one at a time, in a sequential
manner. Serial processing was used from late 1940 to mid of 1950. Serial processing system
didn’t have an operating system. In this type of system users needed to schedule and setup
the machine by interacting with the hardware directly. An operator was responsible for
operating the system. Tasks were loaded onto storage devices like punch cards, paper tapes,
magnetic tapes etc. and submitted to the operator for execution.

Key features for Serial Processing:

i) Single Process Execution: The OS only runs one process or task at a time. Each process
gets its turn on the CPU, and no other processes can be executed until the current one
completes.

ii) CPU Utilization: The CPU is only active during the time it is executing a process. If the
process is waiting for some I/O operation (such as reading from disk or waiting for user
input), the CPU might remain idle during that period.

iii) Simplicity: Serial processing systems were simpler to design and manage since they do not
require complex scheduling algorithms or resource management for multiple concurrent
processes.

iv) Efficiency Limitations: Not efficient for modern computing needs where high throughput
is required.

2) Simple Batch Operating System: Batch OS groups tasks into a group called batch. The grouping is
done on the basis of some similarity criteria. The tasks in a batch are executed sequentially.

Key features of a Simple Batch OS:

i) No User Interaction During Execution: Jobs (which typically consist of a program and its
input data), are grouped together into a batch and processed sequentially. The system
handles jobs without user intervention during execution.

ii) Sequential Execution: The operating system processes jobs one by one, in the order they
were submitted (or in a prioritized order if the system supports priorities). Each job runs
to completion before the next one begins.

iii) No Multitasking: Batch systems don't support multitasking or time-sharing. Only one job
runs at a time, and the CPU switches between jobs when the current job finishes.

iv) Efficiency for Long Running Jobs: Batch processing is efficient for jobs that require
substantial amounts of CPU time, such as scientific calculations, data processing, or
payroll processing. It allows the system to work on long-running tasks without being
interrupted by user requests.

3) Multiprogram Batch Operating System: In Multiprogram Batch Operating System multiple jobs
can be loaded onto the main memory. Here jobs are scheduled and executed in batches. The
system switches between jobs to keep the CPU busy.

Key features of Multiprogramming Batch OS:

i) Job Scheduling: The operating system schedules multiple jobs and allocates resources to
them.

ii) No User Interaction During Execution: Once a batch of jobs is submitted, the user does
not interact with the system during their execution.

iii) Efficient CPU Utilization: Multiprogramming ensures that the CPU is almost always in use.
If one program is blocked, waiting for I/O operations, the OS switches to another job,
minimizing idle time.

iv) Memory Management: The system must manage memory carefully to handle multiple
programs at once.

4) Time-Sharing Operating System: In Time-Sharing OS multiple users can share computer resources
simultaneously by allocating time slices for each user. This enables efficient use of CPU by
switching between tasks, creating an illusion of parallel execution and thus maximizes resource
utilization and reduces idle time by dynamically managing tasks.
Key features of Time-Sharing OS:

i) Resource Sharing: Time-sharing systems allow users to share resources like memory, CPU
97

time, disk space, and peripherals. This sharing ensures that the resources are efficiently
utilized.

ii) Job Scheduling: The system uses a scheduler to manage the order in which processes are
executed.

iii) Response Time: Time-sharing systems are designed to provide a quick response to user
93

inputs, making them suitable for interactive environments.

iv) Efficiency: Time-sharing systems aim to maximize CPU utilization by keeping the CPU busy
at all times.

5) Multi-Processor Operating System: A Multi-Processor OS is used for computer systems having
multiple processors. This type of OS is designed for processing multiple tasks parallelly.

Key features of Multi-Processor OS:

i) Load Balancing: Distributes tasks efficiently across processors to avoid overloading any
single CPU.

ii) Increased Throughput: Enhances system throughput by utilizing the combined power of
multiple processors.

iii) Fault Tolerance: Provides greater reliability and fault tolerance, as one processor can take
95

over if another fails.

iv) Scalability: Supports adding more processors to the system for increased capacity and
performance.

6) Real Time Operating System (RTOS): Real Time OS were designed to meet the time constraints
required for real time applications. RTOS finds applications in automotive systems, medical
devices, industrial control systems, aerospace and defence, consumer electronics etc.

Key features of RTOS:

i) Reliability: RTOS needs to be reliable for time critical applications.

ii) Scheduling: RTOS systems use specialized scheduling algorithms to ensure that high-
3232

priority tasks are executed within their deadlines.

iii) Interrupt Handling: In an RTOS, handling interrupts is crucial. Interrupts are signals that
indicate the need for immediate attention to ensure real-time performance.

54

iv) Minimal Latency: The ability to respond to external events or interrupts with minimal
delay is critical in real-time systems.

Other than the operating systems discussed above there are a number of operating systems built
depending on the needs and devices they operate. Some of these OS are:

➢
➢
➢
➢

Embedded Operating System
Mainframe Operating System
Server Operating System
Smart Card Operating System

1.4 Unit Summary

Operating System (OS) manages hardware and provides a platform for running application software.
The Primary Goal of OS is to Ensure ease of access and high throughput for CPU tasks.

Primary functions of an OS:

1. Resource Management: Allocates and optimizes use of CPU, memory, storage, and I/O
devices.

2. Process Management: Handles the creation, scheduling, and termination of processes.

3. Memory Management: Efficiently allocates and manages memory resources for processes.

4. File System Management: Organizes and manages data on storage devices.

5. Security and Access Control: Protects data and controls system access through authentication
and encryption.

Types of Operating Systems:

➢

➢

➢

➢

➢

➢

Serial Processing: Executes tasks sequentially with no multitasking; inefficient for modern
needs.

Simple Batch Operating System: Groups tasks for sequential execution with no user
interaction.

Multiprogram Batch Operating System: Loads multiple jobs into memory, maximizing CPU
utilization.

Time-Sharing Operating System: Allocates CPU time slices to multiple users for efficient
resource sharing.

Multi-Processor Operating System: Utilizes multiple processors for task parallelism and load
balancing.

Real-Time Operating System (RTOS): Handles time-critical tasks with minimal latency and
ensures deadlines.

➢

➢

➢

➢

Embedded OS: Designed for embedded systems with limited resources.

Mainframe OS: Manages large-scale enterprise systems.

Server OS: Manages resources and supports clients in server environments.

Smart Card OS: Operating system for secure applications on smart cards.

Check Your Progress:

1. What is the primary function of an operating system?

2. How does an OS manage hardware resources?

3. What is a process, and why is process management important?

4. Why is memory management needed in an OS?

5. What does file system management do in an OS?

6. What security features does an OS provide?

7. How does serial processing differ from batch processing?

8. What is the advantage of multiprogramming in an OS?

9. How does a time-sharing system work?

10. What makes a Real-Time Operating System (RTOS) different?

Unit 2: System Calls

2.1 Introduction

System calls are fundamental to the interaction between user applications and the operating system
76

(OS). They provide a controlled interface through which programs request services from the OS,
allowing them to perform operations that require elevated privileges or direct access to system
resources. Without system calls, user applications would be unable to interact with hardware or
other critical OS components like memory management, file systems, and input/output devices,
because direct access to these resources is typically restricted.

System calls are categorized into various groups based on the kind of functionality they provide.
These categories include Process Management, File Management, Directory Management, Memory
Management, Device Management, and Communication Management. Here, we will focus on three
primary categories: Process Management, File Management, and Directory Management. Each
category encompasses a range of system calls that enable different aspects of program and system
management, ensuring seamless operation of programs within the OS environment.

2.2 System Calls for Process Management
1111

Process management refers to the tasks involved in the creation, scheduling, execution, and
termination of processes. The operating system is responsible for managing the lifecycle of
processes, ensuring they are executed efficiently while maintaining system stability. System calls in

69

this category are essential for creating new processes, managing the execution flow, and
synchronizing the operations between parent and child processes.

Key system calls in Process Management include:

➢ fork(): This system call creates a new process by duplicating the calling (parent) process. The
new process is an exact copy of the parent, except for the returned value. In the parent
process, fork() returns the process ID (PID) of the child process, whereas in the child process,
it returns 0. This mechanism allows for the creation of a child process, which can then
perform a different task from the parent. It is a core building block for process creation in
Unix-like systems.

➢

➢

exec(): After a process is created using fork(), the exec() system call is often used by the child
process to replace its current program with a new program. This call loads a different
program into the process’s memory space, effectively changing the process’s behavior. It is
used when a process needs to run a different program entirely, as in the case of shell
commands running programs like text editors or compilers.

wait(): The wait() system call is used by a parent process to wait for its child processes to
complete their execution. When a child process terminates, the OS sends a signal to the
parent process, and wait() allows the parent to retrieve the child’s exit status. This ensures
that the parent can synchronize with the child process and handle the child’s termination
appropriately. It also prevents the creation of "zombie" processes—child processes that
have completed execution but whose exit status has not been collected.

➢ exit(): When a process has completed its execution, it calls exit() to terminate itself. This
system call passes an exit status code to the OS, which is then passed to the parent process.
This status code indicates whether the process terminated successfully or encountered an

error. Proper use of exit() ensures that resources allocated to the process, such as memory
and file descriptors, are released back to the OS.

➢

➢

getpid(): The getpid() system call retrieves the process ID (PID) of the calling process. This
can be useful for managing processes, particularly when a program needs to identify itself or
communicate with other processes.

getppid(): Similar to getpid(), getppid() returns the process ID of the parent process. This is
often used for processes to determine their relationship with their parent and adjust

120

behavior accordingly.

A detailed example of the interaction between fork() and exec() is the creation of a child process by
1111

calling fork(), which then executes a new program using exec(). This combination is commonly used
in applications like shells, where a user can execute a new program (e.g., a text editor or a compiler)
after initiating it with a command.

2.3 System Calls for File Management

File management system calls handle operations related to files, including the creation, opening,
reading, writing, and deletion of files. These calls are fundamental for programs that interact with
files on storage devices. They allow programs to access, modify, and organize data stored in the file
system.

Key system calls for File Management include:

➢ open(): This system call opens a file, allowing the program to read from or write to the file. It
returns a file descriptor, a non-negative integer that is used in subsequent operations on the
file, such as reading, writing, or closing the file. The open() call can also specify file access
modes, such as read-only, write-only, or read-write, as well as file creation options.

➢ read(): The read() system call reads data from an open file into a buffer. The call returns the
number of bytes read, which can be used to determine how much data was successfully
retrieved. read() is often used for processing file content, such as loading a configuration file
or reading input data from a file.

➢

➢

write(): This call writes data from a buffer to an open file. Like read(), it returns the number
of bytes written, allowing the program to check if the write operation was successful. This
system call is often used when modifying files or logging data.

close(): The close() system call closes an open file descriptor, freeing the associated system
resources. After a file is closed, it can no longer be accessed unless reopened. Properly
closing files is important for resource management, as leaving files open unnecessarily can
lead to resource leaks.

➢

➢

unlink(): This system call deletes a file from the file system, freeing the space it occupied. It
is often used to remove temporary files or files that are no longer needed. When unlink() is
called, the file is marked for deletion, and its entry is removed from the file system directory.

lseek(): lseek() moves the file pointer to a specific location within the file. It is typically used
when reading or writing data at a specific position in the file, rather than starting from the
beginning. This allows for more efficient access to large files or for operations like random
access.

➢

➢

chmod(): The chmod() system call changes the permissions of a file, allowing or restricting
access based on user, group, and other permissions. It can be used to modify who can read,
write, or execute a file.

chown(): chown() changes the ownership of a file, either by user or group. This is useful for
administrative tasks and for managing file access policies.

A practical example of open() and read() is when a program needs to open a file (e.g., a configuration
file) using open() and then read its contents into memory using read(). The program can then
process the data, such as parsing configuration settings or analyzing logs.

2.4 System Calls for Directory Management

Directory management system calls deal with the creation, deletion, and reading of directories.
Directories are used to organize files into hierarchical structures, and these system calls provide
ways to interact with the directory structure itself.

Key system calls for Directory Management include:

➢

➢

➢

➢

mkdir(): This system call creates a new directory. The directory serves as a container for
files, allowing the organization of data in a structured manner. Directories can be nested
within other directories, forming a tree structure of directories and files.

rmdir(): The rmdir() system call removes an empty directory from the file system. The
directory must be empty before it can be deleted. This call is often used for cleaning up
temporary directories or managing directory structures.

opendir(): opendir() opens a directory for reading. It returns a pointer to the directory
stream, which can be used with other system calls like readdir() to read the contents of the
directory.

readdir(): The readdir() system call reads the next entry in an open directory. It returns a
structure containing information about the file or subdirectory, including its name. This
system call is commonly used in programs that need to list the contents of a directory, such
as file browsers or backup utilities.

➢ closedir(): closedir() closes an open directory stream, releasing the resources associated
with it. It is important to close directories after accessing their contents to prevent resource
leaks.

A practical example of opendir() and readdir() is when a program uses opendir() to open a directory
and then iterates through each file and subdirectory with readdir(), allowing the program to list or
process the contents of the directory.

2.5 Unit Summary

To summarize, system calls are essential mechanisms that allow user programs to interact with the
operating system, particularly for managing processes, files, and directories.

➢ Process Management system calls, such as fork(), exec(), wait(), and exit(), handle the
creation, synchronization, and termination of processes.

➢ File Management system calls, such as open(), read(), write(), close(), and unlink(), provide
functions for working with files, including reading, writing, and deleting data.

➢ Directory Management system calls, such as mkdir(), rmdir(), opendir(), and readdir(), focus
on managing directories and navigating the file system.

Each category of system calls plays a vital role in enabling programs to perform system-level
operations while ensuring efficient resource utilization, security, and stability of the operating
system.

Check Your Progress:

1. What is a system call in an operating system, and why is it necessary?

2. Describe the purpose of the fork() system call and how it interacts with the exec() call.

3. What is the difference between getpid() and getppid() system calls?

4. How does the wait() system call work, and why is it important in process management?

5. Explain the role of the open() system call and how it is used to interact with files.

6. What is the difference between the read() and write() system calls?

7. What does the chmod() system call do, and how is it used?

8. How do the mkdir() and rmdir() system calls work, and what is their significance in directory
management?

9. Can you explain how opendir() and readdir() are used together in directory traversal?

10. Why is it important to close a file descriptor using close() after finishing file operations?

Unit 3: Processes

3.1 Introduction

Processes form the backbone of modern operating systems, enabling multitasking, parallel execution,
and resource sharing. A process represents a running instance of a program, distinguishing it from the
static nature of the program code stored on disk. It encapsulates the program code, the current state
of execution, and the resources required for execution, such as memory, file descriptors, and CPU
registers.

In a multitasking environment, the operating system (OS) ensures that processes run efficiently and
securely. This involves allocating resources, scheduling execution, and managing inter-process
communication. The concept of processes allows an OS to abstract the complexities of hardware,
presenting a virtualized environment where multiple programs can execute concurrently.

By managing processes effectively, the OS provides users with a responsive and reliable computing
experience. This unit delves into the process model, lifecycle, states, and the mechanisms by which
processes are implemented and managed.

3.2 The Process Model

The process model is a conceptual framework that defines how a program transitions from static code
to a dynamic, executing entity. It provides a systematic approach to understanding the lifecycle and
behaviour of processes in an OS.

Definition of a Process

A process is an active entity consisting of:

1. Program Code (Text Section): The static instructions written by the programmer.

2. Execution Context: Includes the program counter (indicating the next instruction to execute),
CPU registers, and call stack.

3. Dynamic Resources: Such as memory, open files, and I/O devices allocated during execution.

Attributes of a Process

Processes are identified and managed using several key attributes:

➢

➢

➢

➢

➢

Process Identifier (PID): A unique number assigned to each process.

Process State: Describes the current condition of the process (e.g., ready, running, waiting).

Priority: Determines the process’s scheduling order relative to other processes.

Resource Usage: Tracks the memory, files, and devices allocated to the process.

Parent-Child Relationships: Processes often form hierarchies, with parent processes creating
and managing child processes.

Role in Multitasking

The process model is integral to multitasking, allowing multiple processes to execute concurrently. By
isolating processes, the OS ensures that errors in one process do not affect others. Multitasking also

depends on the OS’s ability to switch between processes efficiently through context switching and
scheduling.

3.3 Process States

Processes transition through various states during their lifecycle. Each state represents a distinct
phase of execution and interaction with system resources.

Process Lifecycle States

1. New:
In this state, a process is being created. The operating system allocates resources, initializes

57

data structures (e.g., the Process Control Block or PCB), and prepares the process for
execution.

2. Ready:
Once created, the process enters the ready state. It is fully initialized and waiting for CPU time.
Processes in this state are managed in a ready queue based on scheduling algorithms.

3. Running:
The process is actively executing on the CPU. At any given time, only one process per CPU core
is in the running state. A process remains in this state until it is preempted, voluntarily yields
the CPU, or completes execution.

4. Waiting (Blocked):
If a process requires an event to occur (e.g., I/O completion or resource availability), it
transitions to the waiting state. The process remains idle until the event is resolved.

5. Terminated:
When a process completes its task or is explicitly terminated, it enters the terminated state.
At this point, the OS deallocates resources and updates internal data structures to reflect the
process’s end.

State Transition Management

The OS scheduler governs transitions between these states. For example, a process transitions from
"ready" to "running" when it is allocated CPU time and from "running" to "waiting" when it requests
an I/O operation.

3.4 Implementation of Processes

The implementation of processes involves multiple components and mechanisms designed to manage
their lifecycle and ensure efficient execution.

Process Control Block (PCB)

The PCB is a critical data structure that stores all information about a process, including:

1. State Information: Current process state, program counter, and CPU register values.

2. Memory Management Data: Details about memory allocation, such as page tables or segment
descriptors.

3. I/O Status: Information about allocated devices and pending operations.

4. Scheduling Information: Priority, time quantum, and pointers to scheduling queues.

5. Parent-Child Data: Links to parent and child processes for hierarchical management.

The OS uses the PCB to save and restore process states during context switches, ensuring seamless
multitasking.

Context Switching

Context switching occurs when the CPU switches from one process to another. The OS saves the state
222222222

of the current process in its PCB and loads the state of the next process. Although necessary for
multitasking, context switching introduces overhead, making its efficiency critical to system
performance.

Scheduling Algorithms

The OS uses various algorithms to schedule processes, balancing efficiency, responsiveness, and
fairness:

➢

➢

➢

First-Come-First-Served (FCFS): Executes processes in the order of arrival.

Shortest Job Next (SJN): Prioritizes processes with the shortest execution time.

Round Robin (RR): Allocates a fixed time slice to each process in a cyclic order.

Inter-Process Communication (IPC)

Processes often need to exchange data or synchronize their actions. IPC mechanisms facilitate this
while maintaining isolation between processes. Examples include:

➢ Message Passing: Processes exchange information through communication primitives like
send() and receive().

➢

➢

Shared Memory: Processes access a common memory region to share data efficiently.

Synchronization Tools: Semaphores, mutexes, and condition variables prevent race conditions
and ensure safe access to shared resources.

Process Creation and Termination

Processes are created using system calls like fork() in Unix or CreateProcess() in Windows. Termination
occurs when the process completes, encounters an error, or is explicitly killed. The OS handles
resource deallocation, queue removal, and parent notification during termination.

3.5 Unit Summary

This unit explored the concept of processes, highlighting their role as dynamic entities that enable
multitasking and resource sharing. The process model provides a framework to understand how
programs transition from static code to running entities. Process states describe the phases of a
process's lifecycle, from creation to termination. Implementation details, such as the PCB, context
switching, and scheduling algorithms, underscore the complexity of process management in operating
systems.

Processes form the foundation of computing, enabling modern systems to handle multiple tasks
concurrently. Understanding their lifecycle, management, and interaction with system resources is
essential for appreciating the functionality of operating systems.

Check Your Progress:

1. What is a process in the context of an operating system?

2. What are the key reasons for creating a process?

3. How does the OS assign a unique identifier to a new process?

4. What is the purpose of allocating resources during process creation?

5. What information is stored in the Process Control Block (PCB)?

6. What happens during the termination of a process?

7. How does a parent process interact with its child processes?

8. What are the different states a process can be in during its lifecycle?
242424

9. How does a process transition between different states?

10. What role does the Program Counter (PC) play in a process?

Unit 4: Threads

4.1 Introduction

A thread is the smallest unit of execution within a process, representing a single sequence of
instructions that the CPU can execute. Threads are a fundamental concept in modern operating
systems and programming, providing a means to achieve multitasking and parallelism. Within the

1717171717

same process, all threads share a common set of resources, such as memory space, file handles, and
global variables. However, each thread maintains its own local variables, program counter, and stack.
This separation allows threads to execute independently while leveraging shared resources, leading
to efficient execution and communication.

Threads are often referred to as lightweight processes because creating and managing threads
requires fewer system resources compared to creating separate processes. Threads within the same
process share the same address space, enabling faster inter-thread communication and reduced
overhead. This makes threads particularly useful for applications that need to perform multiple tasks
simultaneously or handle multiple users or requests efficiently.

When threads are implemented in user space it is known as user level thread and when thread is
maintained by the operating system, then it is known as kernel level thread. User level threads and
kernel level threads will be discussed in details later in this unit.

222222222

4.2 Thread Model and Usage

Multithreading Models

To bridge the gap between user-level and kernel-level threads, different multithreading models define
the relationship between the two.

The many-to-one model maps multiple user threads to a single kernel thread. This approach is efficient
because it avoids kernel involvement for thread management. However, it suffers from the drawback
that a blocking system call by one thread halts all threads.

The one-to-one model maps each user thread to a kernel thread, providing greater concurrency and
ensuring that a blocking operation by one thread does not affect others. While this model offers better

424242 222222222

performance on multi-core systems, it consumes more system resources because each user thread
requires a corresponding kernel thread.

The many-to-many model strikes a balance between the other two by mapping multiple user threads
to multiple kernel threads. This allows threads to run in parallel while maintaining efficient resource

74

usage and avoiding the blocking limitations of the many-to-one model.

Thread Usage

Threads are widely used in various programming scenarios to enhance performance, responsiveness,
and parallelism. One significant use case is parallel processing, where multiple threads execute
different parts of a task simultaneously on multiple CPU cores. For example, a data-intensive
application can divide its workload into smaller tasks, with each thread handling a portion of the data.
This approach maximizes CPU utilization and significantly improves performance, particularly in multi-
core systems.

Concurrency is another key advantage of threads. Even on single-core systems, threads allow
programs to appear as though they are performing multiple tasks at once. The operating system's
scheduler switches between threads rapidly, creating the illusion of simultaneous execution. This is
particularly beneficial for programs that need to perform input/output (I/O) operations while
simultaneously handling computations. For instance, a server application can use one thread to
process incoming network requests while another thread manages file I/O operations.

In graphical user interface (GUI) applications, threads play a critical role in maintaining responsiveness.
Lengthy operations, such as downloading large files or processing complex data, are offloaded to
background threads. This ensures that the main thread, responsible for updating the user interface,
remains responsive to user actions such as clicks and keypresses. Without threading, the application
might freeze or become unresponsive during intensive tasks.

Threads are also extensively used in asynchronous I/O operations. By employing threads, programs
can continue executing other tasks while waiting for I/O operations to complete, such as reading data

1717171717

from a disk or waiting for a network response. In real-time and embedded systems, threads are
essential for executing periodic tasks or those with strict timing constraints, such as updating sensor
readings or controlling hardware devices.

4.3 Implementation of Threads

Threads can be implemented at either the user level or the kernel level, each approach offering
distinct advantages and trade-offs.

User-Level Threads

User-level threads are managed entirely in user space, without involving the operating system kernel.
Thread management, such as creation, synchronization, and scheduling, is handled by a user-level
library. This approach offers several advantages. Context switching between user-level threads is
extremely fast since it does not require a mode switch to the kernel. Applications can also implement
custom thread scheduling policies tailored to their specific needs, providing greater flexibility.

However, user-level threads have limitations. If one thread performs a blocking operation, such as
waiting for I/O, the entire process may become blocked because the kernel is unaware of the
individual threads. Additionally, user-level threads cannot achieve true parallelism on multi-core
systems, as the operating system assigns only one kernel thread to the entire process.

Kernel-Level Threads

Kernel-level threads are directly managed by the operating system. Each thread is visible to the kernel,
which schedules and manages them independently. This approach enables true parallelism, allowing
threads to run on multiple CPU cores simultaneously. Furthermore, if one thread performs a blocking
operation, other threads in the process can continue executing.

While kernel-level threads provide robust handling of parallelism and blocking operations, they come
with higher overhead. Creating, managing, and switching between kernel-level threads involves mode
transitions and additional system resources. This makes kernel-level threads less suitable for
applications that require a large number of lightweight threads with frequent context switches.

4.4 Pop-Up Threads

Pop-up threads are a dynamic thread creation mechanism where threads are spawned in response to
specific events or conditions. These threads are created when needed and terminated once their tasks
are complete. Pop-up threads are commonly used in scenarios with unpredictable workloads, such as
handling incoming user requests or processing real-time data streams.

A common example is a web server that spawns a new thread to handle each incoming HTTP request.
424242

This ensures that requests are processed concurrently without blocking the server's main thread.
Similarly, GUI applications use pop-up threads to handle background tasks like downloading files or
processing user input, allowing the main thread to remain responsive.

While pop-up threads optimize resource usage by being created only when necessary, they can
introduce performance overhead if thread creation and destruction occur frequently. This overhead
arises from the need for context switching and resource allocation, which can impact overall system
performance if not carefully managed.

Scheduler Activation

In multithreading the kernel needs to communicate with the thread library. This communication is
necessary in many-to-many and two-level models for dynamic adjustment of kernel threads. So, a data

222222222

structure is used for this purpose, known as Light Weight Process (LWP). The LWP acts as the virtual
processor for the user thread library. Each LWP is linked to a kernel level thread. An application can
schedule a user level thread to run on the virtual processor and the kernel level thread is scheduled
by the operating system to run on the physical processor. This scheme is known as scheduler
activation.

In conclusion, threads are an integral part of modern programming, enabling efficient multitasking,
parallelism, and responsiveness. Whether implemented at the user or kernel level, threads provide
the foundation for achieving concurrency and optimizing resource utilization. Choosing the
appropriate thread implementation and multithreading model depends on the application’s
requirements for performance, flexibility, and system resource constraints. From web servers to real-
time systems, threads continue to be a versatile and powerful tool for handling complex and dynamic

102

workloads.

4.5 Unit Summary:

➢

➢

➢

Threads are lightweight units of execution within processes, sharing memory and resources.

They enable parallelism, concurrency, responsiveness, and efficient resource management.

Threads can be managed in user-space (without kernel involvement) or kernel-space (with
kernel management).

➢

➢

➢

There are different threading models: many-to-one, one-to-one, and many-to-many.

Pop-up threads are dynamically created for specific tasks when needed.

Scheduler activation uses Light Weight Processes (LWP) for communication between user
thread libraries and kernel threads.

Check Your Progress:

1. What is a thread in the context of processes?

2. How do threads within the same process share resources?
1717171717

3. Name two primary uses of threads in programming.

4. What is the difference between user-space and kernel-space thread implementation?

5. What is a key disadvantage of user-level threads?

6. How do kernel-level threads benefit from true parallelism?

7. What is the many-to-one threading model?

8. Explain the one-to-one threading model and its advantage.

9. What is a pop-up thread and where is it typically used?

10. What role does the Light Weight Process (LWP) play in scheduler activation?

Unit 5: Interprocess Communication (IPC)

5.1 Introduction

Interprocess Communication (IPC) refers to the set of mechanisms that allow processes (independent
6666

programs) to communicate with each other and coordinate their actions in a computer system. In
modern computing, most systems run multiple processes simultaneously, and these processes often
need to exchange information, share data, or synchronize their activities to achieve a common goal.

Since processes typically run in their own separate memory spaces, they cannot directly access each
other’s memory. IPC provides a way for them to interact without violating the isolation and integrity
of their individual memory spaces.

IPC is essential in a multitasking environment where several processes are running concurrently. It
facilitates the sharing of resources, synchronization of tasks, and communication between programs,
making it possible for them to work together to complete complex operations.

Importance of IPC

1. Resource Sharing: IPC allows different processes to share resources such as memory, files, or
devices efficiently. Without proper communication, it would be difficult for processes to
collaborate or share data in a controlled manner.

2. Data Exchange: In systems where one process generates data and another consumes it (e.g.,
in producer-consumer scenarios), IPC is crucial for transferring that data between processes.

3. Synchronization: Many systems require that processes synchronize their operations to avoid
conflicts. For example, two processes may need to coordinate the access to a shared resource
to avoid race conditions (where simultaneous access leads to incorrect or inconsistent
results).

4. Distributed Systems: In distributed systems, where processes might be running on different
machines, IPC allows these processes to communicate over a network. This is particularly
important in client-server architectures, where multiple clients need to send requests to a
central server.

5. Concurrency: IPC helps in managing the concurrency of processes. By facilitating
communication and coordination, IPC allows processes to run concurrently without

105

interfering with each other.

5.2 Race Conditions, Critical Sections

In systems where multiple processes or threads execute concurrently, race conditions and critical
sections are essential concepts that help in managing access to shared resources. These concepts are
fundamental in ensuring the correctness and synchronization of concurrent operations, especially in
complex systems where several processes interact with the same data.

Race Conditions

A race condition occurs when two or more processes or threads attempt to modify shared data at the
242424

same time, and the final outcome depends on the order in which the operations occur. Since the
processes may execute concurrently, without any synchronization, the operations may interfere with

6666

each other, causing inconsistent or incorrect results. The problem arises from the unpredictability of
execution sequences, making the outcome dependent on the timing or sequence of access to shared
resources.

For example, in a bank account system, where two processes are attempting to update a shared
balance, race conditions can lead to incorrect values. If both processes read the balance and then
perform their operations (such as adding money), both will operate on the same initial value, even
though the balance should have been updated after the first process completes. The final result might
not reflect the intended updates, leading to errors.

A race condition generally happens when the following happens simultaneously:

➢

➢

➢

One process reads data.

Another process modifies the same data.

Both processes attempt to write to the data, leading to overwriting and data inconsistency.

To prevent race conditions, synchronization techniques such as locks or semaphores are employed to
222222222

control access to shared resources, ensuring that only one process can modify the resource at any
5353

given time.

Critical Sections

A critical section refers to a part of the code in which shared resources, such as variables, files, or
1717171717

memory, are accessed and modified. Since more than one process may attempt to access the critical
section simultaneously, it is essential that only one process is allowed to execute in this section at any

222222222

time to ensure the integrity of the shared resources.

The concept of a critical section directly relates to mutual exclusion, where mutual exclusion ensures
87

that only one process or thread can enter the critical section and perform the operation on shared
resources. This exclusion is necessary to avoid race conditions, ensuring that the operations on the
resource do not interfere with one another, and that no inconsistent data is produced.

424242

For example, in the case of a printer shared by multiple users, the printer must be accessed by only
222222222

one user at a time. If multiple users send print jobs simultaneously, the printed output may become
garbled, or the printer may receive conflicting commands. To prevent this, a synchronization
mechanism is required to ensure that only one user can access the printer at a time.

Problems Arising from Critical Sections

While critical sections are necessary to protect shared resources, their implementation comes with
challenges such as race conditions, deadlock, and starvation. These challenges can cause the system
to become inefficient or even unresponsive.

➢

➢

Race Conditions: If multiple processes are allowed to access the critical section at the same
1717171717

time, race conditions can occur. This undermines the purpose of the critical section, as it can
result in inconsistent data.

Deadlock: A deadlock occurs when two or more processes wait indefinitely for each other to
242424

release resources, resulting in a situation where no process can proceed. Deadlock typically
arises when multiple processes acquire locks in different orders or when there is circular
waiting.

➢ Starvation: Starvation happens when a process is continually denied access to a critical section
due to the continuous allocation of resources to other processes. This can occur if processes
are not scheduled fairly or if certain processes are given higher priority repeatedly, leading to
indefinite postponement of others.

These problems can severely affect the performance of a system, especially in environments with
heavy process contention.

5.3 Mutual Exclusion and Synchronization Techniques

Mutual exclusion is a fundamental concept in concurrent programming, ensuring that shared
resources are accessed by only one process or thread at a time. This is essential for preventing race

222222222

conditions, which occur when multiple processes attempt to modify shared data concurrently. When
mutual exclusion is correctly implemented, data consistency is preserved, and processes interact
safely. Various synchronization techniques are used to enforce mutual exclusion and manage the
concurrent execution of processes.

Mutual Exclusion

Mutual exclusion refers to the rule that only one process can execute in its critical section at any time.
The critical section is the portion of code that accesses shared resources, such as variables, memory,
files, or devices. If multiple processes were allowed to access a critical section concurrently, it could
lead to inconsistent or incorrect results, a scenario known as a race condition. For example, two
processes attempting to update the same variable simultaneously could lead to unpredictable
outcomes.

By ensuring that only one process executes in its critical section at a time, mutual exclusion prevents
5353 222222222

race conditions and guarantees that shared resources are used in a controlled manner. Mutual
exclusion is a cornerstone of any synchronized system, where concurrent processes or threads must
operate without interfering with each other.

To implement mutual exclusion, synchronization mechanisms are needed. These mechanisms prevent
two or more processes from entering their critical sections at the same time, thus ensuring proper
data consistency and preventing conflicts.

Synchronization Techniques

There are several techniques for achieving mutual exclusion and synchronizing processes or threads.
These techniques can be categorized into locks, semaphores, monitors, condition variables, and read-
write locks, each with its own unique approach to managing synchronization.

Locks

A lock is a fundamental synchronization mechanism used to protect critical sections and control access
15151515

to shared resources. The idea is that only one process or thread can acquire the lock at any given time.
If a process holds the lock, other processes must wait until the lock is released before they can enter
the critical section.

There are different types of locks:

➢ Mutexes (Mutual Exclusion): A mutex is a binary lock used to ensure that only one process can
9999

access the critical section at any given time. When a process wants to enter the critical section,
it must acquire the mutex. If another process holds the mutex, the requesting process is
blocked until the mutex is released. Mutexes are widely used in systems that require strict
mutual exclusion.

➢ Spinlocks: A spinlock is a type of lock where a process repeatedly checks whether the lock is
available. If the lock is not available, the process keeps checking in a busy-wait loop without
relinquishing the CPU. While this ensures that the lock is eventually acquired, spinlocks are
less efficient because they consume CPU time while waiting. They are typically used when the

94

expected wait time is very short, as the overhead of blocking and waking up a process would
be greater than busy-waiting.

Semaphores

A semaphore is a signalling mechanism used to control access to resources by multiple processes.
Semaphores manage the availability of resources and prevent conflicts when multiple processes need

15151515

to access them. Semaphores can be classified into two types:

➢ Counting Semaphore: A counting semaphore can hold any non-negative integer value. It is
used to manage multiple instances of a resource. For example, if there are five identical

19191919

printers, a counting semaphore can be used to track how many printers are available. When
a process acquires a printer, the semaphore is decremented, and when a process releases a
printer, the semaphore is incremented.

➢ Binary Semaphore (Mutex): A binary semaphore takes only two values, 0 and 1. It is used to
enforce mutual exclusion and ensure that only one process can access the critical section at a

9999

time. It behaves similarly to a mutex, where the value 1 indicates that the critical section is
available and the value 0 indicates that the section is in use.

The key operations used with semaphores are:

➢ Wait (P operation): A process checks the value of the semaphore. If the value is positive, the
process can proceed and decrements the semaphore. If the value is zero, the process is
blocked until the semaphore value becomes positive.

➢ Signal (V operation): A process increments the value of the semaphore, potentially waking up
a blocked process.

Semaphores are powerful synchronization tools but require careful handling to avoid issues such as
deadlock (where processes get stuck waiting for each other) or race conditions.

16161616161616

Monitors

A monitor is an abstract data type that provides a higher-level synchronization mechanism. A monitor
encapsulates shared data, procedures, and the synchronization required to access the data, making it
easier to manage synchronization. The main benefit of a monitor is that it automatically ensures that

9999

only one process can execute a monitor procedure at any time, eliminating the need for explicit locks.

Monitors are used in languages and systems that support high-level abstractions for synchronization.
They typically include:

➢

➢

➢

Shared data structures (variables, objects).

Procedures to modify and access these data structures.

Condition variables used for synchronization.

When a process wants to execute a procedure in a monitor, it must first acquire the monitor. Only
3131

one process can execute within the monitor at any time, ensuring mutual exclusion. Monitors can also
include condition variables that allow processes to wait for certain conditions to be met before
proceeding.

Monitors offer a simple and clean way to manage synchronization but may involve additional
complexity compared to using simpler primitives like locks or semaphores.

Condition Variables

Condition variables are used in conjunction with locks or monitors to allow processes to wait for
certain conditions to be true before continuing execution. For example, a process may wait for a
condition variable to be signaled before proceeding, and another process can signal the condition
variable when the condition is met.

A process can:

➢ Wait: A process may wait on a condition variable if it cannot proceed due to some condition
not being satisfied (e.g., waiting for data to become available).

➢ Signal: When the condition is met (e.g., data becomes available), a process signals the
condition variable to wake up waiting processes.

Condition variables are used within monitors to ensure that processes only proceed when certain
conditions are true, avoiding unnecessary waiting and allowing more efficient synchronization.

Read-Write Locks

A read-write lock is a synchronization technique that allows multiple processes to read a shared
resource concurrently while ensuring that only one process can write to the resource at a time. This

99

is particularly useful when the resource is frequently read but rarely written to.

The main idea is:

➢

➢

Readers can access the resource simultaneously, as long as no writer is accessing it.

Writers have exclusive access to the resource and block all readers during the writing process.

Read-write locks improve the system's efficiency when read operations vastly outnumber write
operations by allowing concurrent reads while still maintaining synchronization during writes.
However, read-write locks can be complex to implement and require careful handling to avoid issues
like starvation (where writers are continually blocked by readers) or deadlock.

5.4 Classical IPC Problems

1. The Dining Philosophers Problem:

The Dining Philosophers Problem is one of the most well-known synchronization problems, initially
introduced by E.W. Dijkstra in 1965. It provides a way to think about shared resources and process
synchronization in a system where multiple processes need to communicate or share limited
resources without causing issues like deadlock or starvation.

In the problem, there are five philosophers sitting at a circular table. Each philosopher does two things:
think and eat. To eat, a philosopher must pick up two forks, one on their left and one on their right.
These forks are shared between adjacent philosophers, so if a philosopher wants to eat, they need to
pick up both forks. The philosopher can only eat when they hold both forks and must put them down
afterward to think.

The major challenges in this problem revolve around how to avoid deadlock and starvation:

➢ Deadlock: A situation where each philosopher picks up one fork simultaneously and waits for
the other fork, leading to a cycle where no philosopher can eat. For example, philosopher A
might pick up the fork on their left, philosopher B does the same, and now both are waiting
for the fork on their right, which will never be freed.

➢ Starvation: If one philosopher is constantly unable to acquire both forks because other
philosophers keep eating, they may never get the opportunity to eat.

Several solutions have been proposed to tackle these challenges:
122

➢ Resource Hierarchy Solution: Philosophers are assigned a numbering system, and they always
pick up the lower-numbered fork first. This prevents circular waiting, which is a necessary

7878

condition for deadlock to occur. Since no philosopher can wait for the fork on the other side
125

of the cycle first, it avoids deadlock. However, this solution may not always eliminate
8282

starvation.

➢ Chandy/Misra Solution: This solution uses a message-passing approach where philosophers
request forks from their neighbors, and forks are only passed according to a set of rules that
ensures no philosopher is starved or blocked from eating indefinitely. Each philosopher
requests forks and only eats once both are granted, ensuring fairness.

2. The Sleeping Barber Problem:

The Sleeping Barber Problem is another classic synchronization problem, this one illustrating how to
manage a system where processes interact with each other under limited resource constraints. In this

121

problem, a barber operates a shop with a limited number of seats for waiting customers. The barber
8282

has one chair where he cuts hair, and if there are no customers, he sleeps. If a customer arrives and
the barber is awake, the barber starts cutting the customer’s hair. However, if the barber is busy, the
customer must wait their turn in the waiting area. If all the waiting chairs are occupied, the customer
leaves.

The Sleeping Barber Problem poses challenges in how to synchronize the barber’s behavior with that
of the customers:

➢ Synchronization: The barber should sleep when no customers are in the shop and wake up
when a customer arrives. If a customer arrives and finds the barber sleeping, they wake him
up. The challenge lies in synchronizing the waiting customers and the barber's actions.

➢ Queuing and Waiting: Customers must wait if the barber is busy, but there is a constraint on
how many customers can wait. If the waiting area is full, new customers leave without getting
a chance to be served.

There are several key concerns in solving this problem:

➢ Deadlock: This occurs when processes are stuck in a waiting state without making any
progress. For example, if the barber and all customers are asleep at the same time, no one

19191919

can make progress.

➢ Starvation: Starvation in this context happens when some customers are always blocked from
getting the barber’s attention because they never manage to get a seat in the waiting area or
because the barber is constantly busy with other customers.

The typical solutions to the Sleeping Barber Problem make use of synchronization primitives like
semaphores or condition variables to manage how customers and the barber interact:

➢ Semaphore/Mutex Solution: In a typical semaphore-based solution, a semaphore is used to
count the number of available chairs in the waiting area. The barber is represented by a
process that sleeps when no customers are present and wakes up when one arrives. The
customers will either wait if there is an empty seat or leave if there are no available chairs. A
mutex or binary semaphore is used to protect the critical section where the barber cuts hair,
ensuring that no other customer can be served at the same time.

➢ Condition Variables: Condition variables are often used to synchronize when customers arrive
or leave, and when the barber can begin cutting hair. For instance, a customer may signal the
barber when it is their turn, and the barber may signal that they are done after each haircut.

7878

The use of condition variables ensures that both parties cooperate without wasting resources.

Both of these classical synchronization problems—The Dining Philosophers Problem and The Sleeping
Barber Problem—are vital in demonstrating core concepts of concurrency, shared resources, and the
need for robust synchronization mechanisms. They are foundational in understanding deadlock, race
conditions, and ensuring fairness in multi-threaded or multi-process systems. Solutions to these
problems often involve careful use of synchronization tools like semaphores, mutexes, and condition
variables to manage access to shared resources, prevent deadlock, and ensure fairness among
competing processes. These problems continue to serve as excellent teaching tools in the field of
operating systems and concurrent programming.

5.5 Unit Summary

In this unit, we have learned about the importance of Interprocess Communication (IPC) in modern
operating systems. IPC allows processes to communicate, synchronize, and share data in a controlled
manner. Key concepts covered include:

➢

➢

Race Conditions and Critical Sections: The potential for errors when multiple processes access
444

shared resources, and the need for mutual exclusion to avoid such problems.
19191919

Synchronization Techniques: Methods like locks, semaphores, monitors, and read-write locks
to ensure that only one process accesses a critical section at a time, preventing race
9999

conditions.

➢ Classical IPC Problems: Well-known problems in process synchronization, such as the
producer-consumer, readers-writers, dining philosophers, and sleeping barber problems, and
their solutions.

Understanding and applying the appropriate IPC techniques is crucial for building efficient, concurrent
systems that avoid issues like data corruption, deadlock, and starvation.

Check Your Progress

1. What is Interprocess Communication (IPC), and why is it important in modern computing
systems?

2. Describe how IPC enables resource sharing between processes. Give an example.

3. What role does IPC play in systems with multiple concurrent processes?

4. How does IPC help with synchronization between processes? Provide an example.

5. What challenges arise when processes need to exchange data or synchronize in distributed
systems?

6. Define a race condition and explain how it can cause problems in concurrent systems.

7. What is a critical section, and why is it necessary for ensuring data integrity in a concurrent
environment?

8. Explain how mutual exclusion works to prevent race conditions. Why is it critical for process
synchronization?

9. What are the potential issues that can arise when managing critical sections? Mention race
conditions, deadlock, and starvation.

10. Describe the concept of deadlock in concurrent systems and how it relates to critical sections.

11. What is starvation, and how can it affect process scheduling in a system with critical sections?

12. List and describe at least two synchronization techniques used to ensure mutual exclusion.
How do they work?

13. What are mutexes and spinlocks? How do they differ, and when would each be used?

14. Explain the difference between a counting semaphore and a binary semaphore. Provide
examples of their usage.

15. What is the Dining Philosophers Problem, and what synchronization challenges does it
illustrate? How do different solutions attempt to avoid deadlock and starvation in this
problem?

Unit 6: Process Scheduling

6.1 Introduction

Process scheduling is a fundamental concept in operating systems (OS) that determines the order in
which processes are executed by the CPU. The operating system manages a variety of tasks, such as
allocating resources, managing memory, and providing a user interface. One of its most important
responsibilities is to schedule processes for execution, ensuring that system resources, particularly
the CPU, are used efficiently.

Processes are programs in execution, and in any modern computing environment, multiple
processes run simultaneously. However, since there is usually only one CPU (or a limited number of
CPUs), only one process can be executed at any given time. The process scheduler's job is to decide

16161616161616

which process should run next, when it should run, and for how long, while considering factors like
fairness, efficiency, and responsiveness.

Importance of Process Scheduling

Process scheduling is essential for:

1. Maximizing CPU Utilization: Efficient scheduling ensures that the CPU is kept busy, avoiding
idle time.

2. Fairness: The system needs to fairly allocate CPU time among all processes, preventing any
process from monopolizing the CPU.

3. Response Time: For interactive systems, it is crucial to ensure quick responses to user inputs,
such as mouse clicks or keyboard presses.

4. Throughput: The number of processes completed in a given time period is maximized
16161616161616

through efficient scheduling.

5. Prioritization: Different processes may have varying levels of importance. Scheduling helps
prioritize critical tasks, ensuring that high-priority processes are given precedence.

Types of Process Scheduling

1. Preemptive Scheduling: In this approach, the operating system can interrupt a running
process to start or resume another process. This is common in systems where
responsiveness is important, such as interactive or real-time systems.

2. Non-preemptive Scheduling: In this approach, once a process starts running, it runs to
completion unless it voluntarily relinquishes control (e.g., via I/O operations). This is simpler
but may result in inefficiencies in multi-tasking environments.

6.2 Scheduling Algorithms

1. First-Come, First-Served (FCFS)

The First-Come, First-Served (FCFS) scheduling algorithm is one of the simplest methods for process
scheduling. In this approach, processes are executed in the order they arrive in the ready queue. The
first process to arrive is given the CPU first, followed by the second, and so on. The simplicity of this
algorithm makes it easy to implement, and it is fair in terms of process arrival time since each
process is handled in the order it appears.

However, FCFS comes with some disadvantages. One major issue is the "convoy effect," where
shorter jobs may be stuck behind longer jobs, resulting in a higher waiting time for smaller tasks.
Additionally, processes that arrive later can experience significant delays if a long process arrives
first. Despite these drawbacks, FCFS is often used in batch processing systems where human
interaction isn’t a concern and job completion time isn’t critical.

2. Shortest Job First (SJF)
3131

Shortest Job First (SJF) assigns the CPU to the process with the shortest execution time (or burst
time) next. This scheduling can be either preemptive or non-preemptive. In a non-preemptive
scenario, once a process starts executing, it runs to completion. In a preemptive setup, the CPU is
given to a new process with a shorter burst time if it arrives while another process is running.

SJF has several advantages, including minimizing average waiting time and turnaround time, making
it effective in environments where the burst time is predictable or can be estimated. However, it can
lead to the starvation of longer processes, as they may never get executed if shorter processes
continue to arrive. Additionally, accurately predicting the burst time of processes can be challenging.

SJF is most suitable for systems where job lengths are known or can be reasonably estimated in
advance.

3. Round Robin (RR)

Round Robin (RR) is a preemptive scheduling algorithm designed for time-sharing systems. Each
process is allocated a fixed time slice, or quantum, during which it can run. Once the time slice
expires, the process is moved to the back of the queue, and the next process in line is scheduled for
execution. If a process finishes before its time slice is over, it is removed from the queue.

4343

This approach is advantageous because it ensures a fair allocation of CPU time among processes.
Round Robin is widely used in time-sharing systems and environments where multiple users or tasks
need to be managed simultaneously. However, if the time slice is too large, it can result in high
waiting times. Conversely, if the time slice is too small, the system might experience poor
performance due to excessive context switching, where the CPU spends too much time switching

19191919

between processes rather than executing them.

Round Robin is commonly used in multi-user systems and operating systems like Linux and
Windows.

4. Priority Scheduling

In Priority Scheduling, each process is assigned a priority, and the CPU is allocated to the process
444

with the highest priority. This can be either a preemptive or non-preemptive approach. In
preemptive priority scheduling, a process with a higher priority can interrupt a running process to
take control of the CPU. In the non-preemptive version, once a process starts executing, it runs to
completion.

The main advantage of this algorithm is that it allows the system to prioritize more critical processes,
such as system or high-priority tasks. Additionally, it can be modified to include aging mechanisms,
which gradually increase the priority of low-priority processes to prevent starvation. However, one
significant downside is that lower-priority processes may be starved if high-priority processes
continuously arrive. Also, determining the correct priority levels for processes can be a complex task.

Priority Scheduling is commonly used in systems where certain processes need to be prioritized,
4343

such as real-time or embedded systems.

5. Multilevel Queue Scheduling

Multilevel Queue Scheduling divides processes into different queues based on their priority, type, or
16161616161616

other characteristics. Each queue may use its own scheduling algorithm, such as Round Robin or
15151515

FCFS. For example, an interactive task queue may use Round Robin, while long-running batch
processes could use FCFS.

This scheduling method is efficient for managing processes with different characteristics, such as
I/O-bound versus CPU-bound tasks. It can provide a balance between responsiveness and
throughput, making it suitable for a variety of workloads. However, one of its major disadvantages is
its complexity in implementation and management. Additionally, processes cannot easily move
between queues unless additional mechanisms, like multilevel feedback, are implemented.

Multilevel Queue Scheduling is suitable for systems that need to manage a mix of process types and
priorities, such as desktop operating systems or web servers.

6. Multilevel Feedback Queue Scheduling

Multilevel Feedback Queue Scheduling is a more dynamic version of the multilevel queue. In this
approach, processes can move between queues based on their behavior. For instance, if a CPU-
bound process is in the interactive queue, it might be moved to a queue that allocates more CPU

16161616161616

time. Similarly, processes that use excessive CPU time can be moved to a lower-priority queue.
15151515 16161616161616

The key advantage of this scheduling method is its adaptability, as it adjusts based on the actual
behaviour of the processes, helping to avoid starvation and ensuring fairness. It is more flexible than
traditional multilevel queue scheduling and can effectively balance different workload types.
However, it can be complex to implement and requires careful tuning of parameters, such as the
time quantum for each queue.

Multilevel Feedback Queue Scheduling is popular in modern operating systems like Linux and
Windows, where processes often exhibit varying characteristics.

7. Earliest Deadline First (EDF)

Earliest Deadline First (EDF) is a dynamic scheduling algorithm mainly used in real-time systems. In
EDF, the process with the nearest deadline is given the CPU next. If a process misses its deadline, it
could result in system failure, which is why this algorithm is ideal for systems with strict real-time
constraints.

The key advantage of EDF is that it is optimal for systems where all tasks need to meet their
deadlines. It is also simple to understand and implement. However, it is not suitable for non-real-

444

time tasks and can cause starvation for lower-priority tasks, especially when numerous high-priority
tasks keep arriving.

EDF is primarily used in real-time systems, such as embedded systems and control systems, where
meeting deadlines is critical to the system's function.

Performance Metrics for CPU Scheduling

➢

➢

➢

➢

➢

Turnaround Time: Turnaround time refers to the total time taken for a process to complete,
which includes the waiting time, execution time, and any time spent on I/O operations. It is
calculated as the difference between the completion time and the arrival time of a process.

Waiting Time: Waiting time is the total amount of time a process spends in the ready queue
before it is executed by the CPU. It is calculated as the difference between the turnaround
time and the burst time of a process.

Response Time: In interactive systems, response time is crucial. It is the time from when a
request is made until the first response is received. This metric is especially important for
user-facing applications, as it affects user experience.

CPU Utilization: CPU utilization refers to the percentage of time the CPU is actively working
as opposed to being idle. Maximizing CPU utilization is an important goal of process
scheduling algorithms.

Throughput: Throughput is the number of processes completed in a given period of time.
Higher throughput indicates more efficient processing of tasks within the system.

CPU scheduling is a critical aspect of operating systems, as it directly influences the efficiency and
performance of the system. The choice of scheduling algorithm significantly impacts factors such as
throughput, response time, fairness, and resource utilization. Different algorithms like Round Robin,
Shortest Job First, and Earliest Deadline First serve different needs, depending on the nature of the
tasks and system requirements. By understanding and selecting the right scheduling strategy,
operating systems can optimize process management to meet specific goals and improve overall
system performance.

6.3 Scheduling in Batch, Interactive, and RealTime Systems

1. Scheduling in Batch Systems

Batch systems are designed to handle large volumes of tasks, or jobs, with minimal user interaction.
These systems typically focus on processing jobs in bulk, without requiring constant human input.
Scheduling in batch systems is generally simpler, as the system does not need to respond to user
requests in real-time. Instead, the system processes jobs sequentially or according to a predefined
prioritization, aiming to optimize throughput and resource utilization.

Key Characteristics

One of the key characteristics of batch systems is their non-interactive nature. Users submit jobs to
the system, and the system takes over, scheduling and processing the tasks without further user
intervention. Jobs are typically placed in a queue, where they await execution. The system strives to
maximize throughput, which refers to the number of jobs processed in a given time frame, while

also working to minimize turnaround time, which is the period between job submission and
completion. Additionally, optimizing resource usage is a primary goal in batch systems, ensuring that
the available resources are used efficiently.

Scheduling Algorithms

Batch systems often utilize specific scheduling algorithms to manage job execution:

➢

➢

➢

First-Come, First-Served (FCFS) processes jobs in the order they arrive. Although this
method is straightforward, it can result in poor turnaround times, especially if a short job is
queued behind a much longer one.

Shortest Job First (SJF) prioritizes the shortest jobs, aiming to minimize average waiting
time. However, this can lead to issues where longer jobs may starve if shorter jobs
continuously arrive.

Priority Scheduling assigns priorities to jobs, executing higher-priority jobs before lower-
priority ones. This scheduling can either be preemptive or non-preemptive, depending on
whether jobs can be interrupted or must run to completion.

Example

In a typical batch processing system, tasks like large-scale computations or printing jobs are queued
up. The system processes each task one after another without user intervention, adhering to the
scheduling rules that maximize efficiency.

2. Scheduling in Interactive Systems

Interactive systems, such as desktop operating systems, prioritize responsiveness to user input,
which includes actions like keystrokes, mouse clicks, and other real-time interactions. These systems
need to balance the demands of multiple processes while ensuring that the system remains
responsive to the user. Scheduling algorithms in interactive systems must allow the system to
quickly switch between tasks, giving the impression of simultaneous execution, even if the CPU is
only handling one process at a time.

Key Characteristics

The interactive nature of these systems requires low latency and high responsiveness. Since users
expect immediate feedback, processes associated with user interactions must be given higher
priority. The system uses time-sharing techniques to allocate small time slices, or quantum, to
different processes, allowing multiple tasks to be processed in quick succession.

Scheduling Algorithms

➢ Round Robin (RR) is one of the most commonly used scheduling algorithms in interactive
systems. In this preemptive algorithm, each process is assigned a fixed time slice. If a process
does not finish within its allocated time, it is placed back in the queue to be processed later.

➢ Multilevel Queue Scheduling organizes processes into different queues based on their
16161616161616

characteristics, such as foreground (interactive) versus background (less urgent) tasks.
Higher-priority queues are processed first, while lower-priority ones wait.

➢ Multilevel Feedback Queue Scheduling is an advanced version of the multilevel queue,
2525

where processes can move between different queues based on their behavior, such as CPU
usage patterns, ensuring a more dynamic and efficient system.

Example

For example, a typical desktop environment, such as Windows or Linux, runs multiple applications
simultaneously, including web browsers, word processors, and media players. Each application is
allotted a slice of CPU time, with immediate user input given higher priority for quick response.

3. Scheduling in Real-Time Systems

Real-time systems are designed to meet strict timing constraints, where the correctness of
operations depends not only on the logical result but also on the time at which the result is
produced. These systems are used in environments where failing to meet a deadline could result in
catastrophic consequences, making precise and predictable scheduling essential.

Key Characteristics

A critical feature of real-time systems is their strict timing requirements. Processes in these systems
must complete within predefined deadlines, and missing a deadline can lead to system failure. Real-
time systems can be divided into hard and soft categories:

➢ Hard Real-Time Systems: Missing a deadline is catastrophic, such as in systems controlling
critical functions like aircraft control.

➢ Soft Real-Time Systems: Deadlines are important, but missing them does not result in
complete failure, such as in multimedia streaming applications.

Scheduling Algorithms

To meet these stringent requirements, several scheduling algorithms are employed in real-time
systems:

➢

➢

➢

Rate Monotonic Scheduling (RMS) is a fixed-priority algorithm where processes with shorter
periods (higher frequencies) are assigned the highest priority. This approach is optimal for
preemptive scheduling in hard real-time systems.

Earliest Deadline First (EDF) is a dynamic scheduling algorithm that prioritizes processes
based on their absolute deadlines. The process with the nearest deadline is given the highest
priority, making EDF highly effective in meeting deadlines.

Least Laxity First (LLF) is another dynamic algorithm that assigns priorities based on the
"laxity" of processes, which refers to the amount of time a process can be delayed without

464646

missing its deadline.

Example

For example, in embedded systems like a car's anti-lock braking system (ABS), real-time scheduling is
crucial to ensure that the control software responds to sensor inputs within strict timing constraints.
This ensures the safety and efficiency of the system, where failure to meet deadlines could have dire
consequences.

6.4 Thread Scheduling

Thread scheduling is a crucial component of modern operating systems, responsible for managing
292929

the execution of multiple threads within a single process. Threads are lightweight units of execution
within a process, sharing the same memory space and resources but running independently. The
operating system must efficiently allocate CPU time to these threads to ensure optimal
performance, particularly in systems with multiple cores and threads.

Key Characteristics of Thread Scheduling

Concurrency
One of the primary characteristics of thread scheduling is concurrency, where multiple threads
within a process are running at the same time. In multi-core systems, threads can be executed in
parallel, maximizing the utilization of available processing power. Even in single-core systems, the

96

operating system gives the illusion of concurrent execution by quickly switching between threads.

Synchronization
Since threads within a process share resources, proper synchronization is essential to avoid race
conditions, where multiple threads attempt to access the same resource simultaneously. This can

292929

lead to unpredictable behavior, data corruption, or crashes. Synchronization mechanisms such as
locks, semaphores, and mutexes are employed to ensure threads operate correctly and safely when
accessing shared resources.

Preemption
Preemption refers to the ability of the operating system to suspend the execution of a running
thread and give the CPU to another thread. This is especially critical in systems with time-sensitive
tasks or multiple high-priority threads. Preemptive scheduling ensures that no single thread
monopolizes the CPU, which is vital for maintaining fairness and responsiveness in real-time and
multi-threaded environments.

Thread Scheduling Algorithms

Various thread scheduling algorithms exist, each offering different methods for deciding which
55

thread should run at a given time. The choice of algorithm depends on the system’s needs, such as
responsiveness, fairness, and efficiency.

Preemptive Scheduling
In preemptive scheduling, each thread is allocated a fixed time slice, known as a quantum, during
which it is allowed to execute. Once the time slice expires, the operating system interrupts the
thread and selects another one to run. This ensures that the CPU time is distributed fairly across all
threads and prevents any single thread from monopolizing the processor. Preemptive scheduling is
commonly used in modern operating systems that need to support multi-threaded environments,
such as Windows, Linux, and macOS.

Non-preemptive Scheduling
Non-preemptive scheduling, on the other hand, allows a thread to run to completion before the CPU

464646

is allocated to another thread. A thread must voluntarily yield control of the CPU, either by
completing its execution or by explicitly signaling the scheduler. This type of scheduling is often used
in systems where threads cooperate and do not require external interruptions. Non-preemptive
scheduling can be more efficient in certain scenarios, as it minimizes the overhead of context

switching. However, it can lead to issues if a thread fails to yield control, causing system
responsiveness to suffer.

Priority Scheduling
Priority scheduling involves assigning each thread a priority level. The operating system schedules
the thread with the highest priority to execute first. If two threads have the same priority, the
scheduler may use a secondary algorithm, such as round-robin, to determine which thread should
run next. Priority scheduling is ideal for systems where certain threads need to be executed before
others, such as in real-time applications or embedded systems. However, one potential downside of
priority scheduling is starvation, where lower-priority threads may never be scheduled to run if
higher-priority threads constantly arrive.

Round Robin Scheduling
Round-robin scheduling is a preemptive algorithm where each thread is given a fixed time slice
(quantum). When a thread’s time slice expires, it is moved to the back of the queue, and the next
thread in the queue is given the CPU. This process repeats in a cyclic manner. Round-robin
scheduling ensures that all threads receive a fair share of CPU time and is particularly suited for

353535

time-sharing systems, where the system must handle multiple interactive tasks concurrently.
However, if the time slices are too large, the response time for interactive tasks may suffer, while

464646

very small time slices may result in excessive context switching overhead.

Multilevel Queue Scheduling
Multilevel queue scheduling divides threads into different categories or queues based on their

1111111111

characteristics. For example, threads can be separated into foreground (interactive) and background
(batch) queues. Each queue may have its own scheduling policy, such as round-robin for interactive

113

threads and first-come, first-served (FCFS) for batch threads. The system assigns threads to the
appropriate queue based on predefined criteria, such as process type or priority. While this

353535

approach can optimize the execution of various types of threads, it can be complex to implement
and manage, and processes may not be able to move between queues unless additional mechanisms

2525

like feedback are implemented.

Multilevel Feedback Queue Scheduling
Multilevel feedback queue scheduling is a dynamic extension of multilevel queue scheduling. In this
algorithm, threads can move between queues based on their behavior. For instance, a CPU-bound

5959

thread may start in a queue that allocates more CPU time and, over time, may be moved to a queue
with less CPU time if it exhibits interactive behavior. This approach provides greater flexibility and
fairness, adapting to varying workloads. It can prevent starvation and ensures that all threads
receive appropriate CPU time based on their needs. However, it requires careful tuning of
parameters such as time slice lengths and queue levels.

Example of Thread Scheduling in Practice

An example of thread scheduling can be found in a web server environment, where each incoming
client request is handled by a separate thread. These threads may need to perform tasks such as
querying databases, accessing files, or processing user input. The operating system schedules these
threads based on factors such as priority, resource availability, and response time requirements. If a

1111111111

thread is blocked (for example, waiting for I/O operations to complete), another thread is scheduled
to run in its place, ensuring that the server remains responsive and can handle multiple client
requests simultaneously. This dynamic scheduling helps maintain high performance in multi-user
and resource-intensive environments.

In conclusion, thread scheduling is a critical aspect of modern operating systems, ensuring that
multiple threads can run efficiently within a process. By carefully managing the allocation of CPU
time, operating systems can optimize performance, improve responsiveness, and prevent issues like
starvation or excessive context switching. The choice of scheduling algorithm depends on the
specific requirements of the system, such as fairness, responsiveness, and efficiency. Understanding
thread scheduling and its various algorithms is essential for developing and managing systems that
can handle complex workloads and provide seamless user experiences.

6.5 Unit Summary

Process scheduling is vital for ensuring an operating system runs efficiently. Different algorithms are
designed for different system types (batch, interactive, and real-time), and thread scheduling helps
manage the execution of threads within processes. The proper scheduling of processes is necessary
for optimizing CPU utilization and improving system performance and user experience.

In summary:

➢

➢

➢

Scheduling is a central task of the OS for resource management.

Various algorithms like FCFS, SJF, RR, Priority Scheduling etc. cater to different system needs.

Scheduling in batch, interactive, and real-time systems is optimized based on the specific
characteristics and performance goals of each.

➢ Thread scheduling optimizes the execution of multiple threads within processes to enhance
system performance.

Check Your Progress

1. What is the main purpose of process scheduling in an operating system?
1111111111

2. Why is maximizing CPU utilization an important goal in process scheduling?

3. How does process scheduling contribute to fairness in an operating system?

4. What is the difference between preemptive and non-preemptive scheduling?

5. What is the convoy effect in First-Come, First-Served (FCFS) scheduling?

6. How does the Shortest Job First (SJF) scheduling algorithm minimize average waiting time?

7. What are the main advantages and disadvantages of the Round Robin (RR) scheduling
algorithm?

8. How does Priority Scheduling help in managing critical tasks in an operating system?

9. What is the key difference between Multilevel Queue Scheduling and Multilevel Feedback
Queue Scheduling?

10. What is the role of the Earliest Deadline First (EDF) algorithm in real-time systems?

11. What is the primary goal of scheduling in batch systems, and which algorithms are
commonly used?

12. How do interactive systems differ from batch systems in terms of scheduling requirements?

13. In real-time systems, what could be the consequences of missing a deadline?

14. How does the Rate Monotonic Scheduling (RMS) algorithm work in real-time systems?

15. What is the advantage of Multilevel Feedback Queue Scheduling over traditional multilevel
queue scheduling?

16. What is the primary characteristic of thread scheduling in multi-core systems?

17. Why is synchronization crucial in thread scheduling, and what mechanisms are commonly
used to ensure it?

18. How does preemptive scheduling differ from non-preemptive scheduling, and when is each
typically used?

19. What is the potential disadvantage of priority scheduling, and how does it affect lower-
priority threads?

20. How does multilevel feedback queue scheduling adapt to varying workloads, and what is its
advantage over traditional multilevel queue scheduling?

Unit 7: Deadlocks

7.1 Introduction

Deadlocks are a critical challenge in modern operating systems, particularly in systems with multiple
processes competing for shared resources. This unit covers the key concepts surrounding deadlock,
including the conditions that lead to deadlock, how to model and detect deadlock situations, and the

5959

strategies for preventing or recovering from deadlock. Understanding deadlocks is essential for
ensuring the reliability and performance of multi-process systems.

Deadlock is a state in which a set of processes in an operating system is unable to proceed with their
1111111111

execution because each process in the set is waiting for a resource that another process holds.
5555

Deadlocks often lead to system inefficiency or complete system failure, as processes are stuck in a
perpetual waiting state with no way to break out of it. This issue is particularly concerning in

90

multitasking environments where multiple processes share common resources such as CPU time,
memory, disk I/O, or network bandwidth.

In a system affected by deadlock, the involved processes cannot make any progress until the
deadlock is resolved, potentially causing significant performance degradation or even a complete
system halt. Therefore, managing deadlocks is a crucial aspect of operating system design and

353535

resource management.

A classic example of a deadlock scenario is where two processes hold resources and request
5555

additional resources that are currently held by the other process, resulting in an interdependent
cycle. This situation is known as a circular wait, which is one of the conditions necessary for deadlock
to occur.

7.2 Resource Management and Deadlock Conditions

In an operating system, multiple processes may simultaneously request and use resources, such as
memory, CPU cycles, or I/O devices. Deadlock arises when these processes become involved in a
circular chain of waiting, with each process holding a resource and waiting for another resource held
by another process. For deadlock to occur, the following four conditions, also known as the Coffman
conditions, must be met:

1. Mutual Exclusion:
Mutual exclusion refers to the condition where at least one resource in the system is non-
shareable, meaning it can only be held by one process at a time. This condition is necessary
for deadlock because if resources were shareable, processes could always proceed by
accessing available resources. In the case of non-shareable resources, such as printers,
memory, or exclusive locks, a process holding a resource can block other processes that
need it.

2. Hold and Wait:
Hold and wait occurs when a process holds at least one resource and is waiting for additional
resources that are held by other processes. This condition increases the likelihood of

deadlock because the processes are not only holding onto resources but also waiting for
others, which may lead to a situation where no process can proceed because they are all
waiting for resources held by each other. An example would be if process P1 holds resource
R1 and is waiting for resource R2, while process P2 holds resource R2 and is waiting for
resource R1.

3. No Preemption:
No preemption refers to the inability of the operating system to forcibly remove resources
from processes. In systems that do not support preemption, resources are only released
voluntarily by processes, which means that if a process is waiting for a resource held by
another, the system cannot intervene by taking the resource away from the holding process.
This lack of preemption can exacerbate deadlock since processes can get stuck in a waiting
state if they are unable to release resources voluntarily.

4. Circular Wait:
Circular wait occurs when a set of processes forms a cycle in which each process is waiting
for a resource that the next process in the cycle holds. This condition is the hallmark of a

1111111111

deadlock because it creates a situation where processes are in a never-ending wait state,
with each waiting for a resource that will never become available. For example, if process P1

5555

holds resource R1 and is waiting for resource R2, process P2 holds resource R2 and is waiting
for resource R3, and process P3 holds resource R3 and is waiting for resource R1, a circular
dependency arises, and none of the processes can proceed.

These four conditions together form a deadly trap for operating systems that need to allocate
resources efficiently. Any system with the potential to meet all these conditions is vulnerable to
deadlock, and mechanisms must be put in place to either prevent or resolve such situations.

7.3 Deadlock Modelling, Detection, and Recovery

Deadlock modeling refers to the creation of abstract models that represent the states of resources
and processes in an operating system, allowing for the analysis of potential deadlock scenarios. One
common way to model deadlock is by using Resource Allocation Graphs (RAGs).

Resource Allocation Graph (RAG)

A Resource Allocation Graph (RAG) is a graphical representation used to model the allocation of
resources to processes and the requests made by processes in an operating system. It is a helpful
tool in understanding and analyzing deadlocks. The graph consists of two types of nodes and edges
that represent the relationships between processes and resources:

Nodes:

➢
➢

Process nodes (P) represent the processes in the system, typically denoted by circles.
Resource nodes (R) represent the resources in the system, typically denoted by rectangles.
Each resource node can contain multiple instances, depicted as small dots within the
rectangle, to represent available or allocated instances of the resource.

Edges:

➢ Request Edge: A directed edge from a process node (Pi) to a resource node (Rj) indicates
that process Pi has requested resource Rj but has not yet been allocated it.

➢ Assignment Edge: A directed edge from a resource node (Rj) to a process node (Pi) indicates
that resource Rj has been allocated to process Pi.

The Resource Allocation Graph provides a visual way to observe the status of resource allocation in a
system and helps identify potential deadlock situations. When a circular wait is detected in the
graph, it signifies that a deadlock may exist, prompting further investigation and resolution
measures.

Deadlock Detection

Detection of deadlocks involves monitoring the system's resource allocation and the status of
processes to determine if a deadlock has occurred. One method of detecting deadlock is to
periodically check for cycles in the Resource Allocation Graph (RAG). If a cycle is found, a deadlock
exists. This technique requires that the operating system tracks the allocation of resources and the

292929

requests made by processes over time.

Deadlock detection is generally performed by a specific detection algorithm, such as:

➢ Wait-for Graph: A simplified version of the RAG where processes are represented as nodes,
and directed edges indicate which processes are waiting for resources held by other

5555

processes. A cycle in the wait-for graph indicates a deadlock.

➢ Banker's Algorithm: A more advanced approach that is used for deadlock avoidance and
detection by assessing whether resource allocation requests will leave the system in a safe
or unsafe state.

Deadlock Recovery

Recovery from deadlock is a challenging task and usually involves one or more of the following
strategies:

➢

➢

➢

Process Termination: One approach to recovery is to kill one or more processes in the
deadlock cycle. This can break the circular wait and allow the remaining processes to
proceed. The process chosen for termination may be selected based on priority, resource
usage, or other criteria.

Resource Preemption: Another strategy involves forcibly taking resources away from one or
more processes in the cycle and reallocating them to other processes. The preempted
processes may be rolled back to a safe state, or their execution may be paused and resumed
later.

Rollback: If the system allows for it, a process may be rolled back to a previous checkpoint,
allowing it to release the resources it holds and try again. This method often works well in
systems where processes are recoverable, such as databases.

7.4 Deadlock Avoidance and Prevention

Deadlock Avoidance involves designing resource allocation algorithms that ensure the system never
enters a deadlock state. One well-known deadlock avoidance strategy is the Banker's Algorithm,
which works by simulating resource allocation and ensuring that the system remains in a safe state

after any resource request is made. A system is in a safe state if there is a sequence of processes
that can be executed without causing a deadlock, even in the worst-case scenario.

Banker's Algorithm for Deadlock Avoidance

The Banker's Algorithm is a detailed and structured approach to avoid deadlocks.

Components:

1. Available Vector: Number of available resources of each type.

2. Allocation Matrix: Resources currently allocated to each process.

3. Maximum Matrix: Maximum demand of each process.

4. Need Matrix: Remaining resources needed by each process (Need = Maximum - Allocation).

Steps:

1. Compute the Need Matrix.

2. Check if the requested resources are less than or equal to the Need and Available resources.

3. Temporarily allocate the resources and update the matrices.

4. Run the safety algorithm:

➢

➢

➢

➢

Start with the Available vector.

Check if at least one process can finish using the current Available resources.

Assume it finishes and releases its resources back to the system.

Repeat until all processes are checked or no such process exists.

5. If the system is safe, grant the request; otherwise, deny it and restore the previous state.

Example for Banker’s Algorithm

Assume we have:

➢

➢

➢

5 processes: P0, P1, P2, P3, P4

3 resource types: A, B, C

The system has a total of 10 instances of A, 5 instances of B and 7 instances of C

Input Data

1. Allocated Resources (resources currently allocated to each process):

Process
P0

A
0

B
1

C
0

P1
P2
P3
P4

2
3
2
0

0
0
1
0

0
2
1
2

2. Available Resources (total instances - allocated instances):

A
3

B
3

C
2

3. Maximum Demand (max resources each process may need):

Process
P0
P1
P2
P3

A
7
3
9
2
4

B
5
2
0
2
3

C
3
2
2
2
3P4

4. Need Matrix (calculated as Maximum Demand - Allocated Resources):

Process
P0
P1
P2
P3

A
7
1
6
0
4

B
4
2
0
1
3

C
3
2
0
1
1P4

Steps of the Algorithm

1. Initial State:

➢

➢

Available resources: [3,3,2][3, 3, 2][3,3,2]

Need matrix as above.

2. Find a Safe Sequence: Look for a process whose Need can be met by the Available resources.
Allocate resources to this process, pretend it has finished, and release its resources back to
Available.

Iteration 1: P1's need [1, 2, 2] ≤ Available [3, 3, 2].
Allocate resources to P1 and release its allocation:
New Available: [3+2,3+0,2+0]=[5,3,2][3 + 2, 3 + 0, 2 + 0] = [5, 3, 2][3+2,3+0,2+0]=[5,3,2].

Iteration 2: P3's need [0, 1, 1] ≤ Available [5, 3, 2].
Allocate resources to P3 and release its allocation:
New Available: [5+2,3+1,2+1]=[7,4,3][5 + 2, 3 + 1, 2 + 1] = [7, 4, 3][5+2,3+1,2+1]=[7,4,3].

Iteration 3: P4's need [4, 3, 1] ≤ Available [7, 4, 3].
Allocate resources to P4 and release its allocation:
New Available: [7+0,4+0,3+2]=[7,4,5][7 + 0, 4 + 0, 3 + 2] = [7, 4, 5][7+0,4+0,3+2]=[7,4,5].

Iteration 4: P0's need [7, 4, 3] ≤ Available [7, 4, 5].
Allocate resources to P0 and release its allocation:
New Available: [7+0,4+1,5+0]=[7,5,5][7 + 0, 4 + 1, 5 + 0] = [7, 5, 5][7+0,4+1,5+0]=[7,5,5].

Iteration 5: P2's need [6, 0, 0] ≤ Available [7, 5, 5].
Allocate resources to P2 and release its allocation:
New Available: [7+3,5+0,5+2]=[10,5,7][7 + 3, 5 + 0, 5 + 2] = [10, 5, 7][7+3,5+0,5+2]=[10,5,7].

Result

The system is in a safe state, and the safe sequence is: P1 → P3 → P4 → P0 → P2. This ensures all
processes can complete without causing deadlock.

To avoid deadlock, the system must carefully consider resource allocation and ensure that the
conditions for deadlock (especially circular wait) are never met. The Banker's Algorithm determines
whether granting a resource request would put the system in an unsafe state by checking if it’s
possible for the requesting process to eventually complete without causing a deadlock.

Deadlock Prevention

Deadlock Prevention, on the other hand, involves eliminating one or more of the Coffman conditions
18181818

to prevent deadlock from occurring in the first place. For example:
1212121212

➢

➢

➢

➢

Eliminate Mutual Exclusion: This can be difficult because most resources are inherently non-
shareable, such as printers or exclusive locks. However, for some types of resources (e.g.,
memory), it might be possible to allow shared access to multiple processes.

Eliminate Hold and Wait: This can be achieved by requiring processes to request all
343434

resources they need at once, before execution begins. This prevents processes from holding
some resources while waiting for others.

Eliminate No Preemption: This can be accomplished by allowing the system to preempt
1313131313

resources from processes that are holding them, ensuring that resources can be reallocated
if necessary.

Eliminate Circular Wait: One way to prevent circular wait is to impose a strict ordering on
resource acquisition. Each process must request resources in a predefined order, ensuring
that no circular dependencies can form.

While deadlock prevention ensures that the system cannot enter a deadlock state, it may come at
the cost of system efficiency or performance, as processes may be forced to request resources in a
more rigid or restrictive manner.

7.5 Unit Summary

Deadlocks are a critical issue in systems that involve multiple processes competing for shared
resources. To effectively manage deadlocks, operating systems must be able to detect when
deadlock occurs, recover from it, and even prevent it from happening in the first place. The Coffman

conditions of mutual exclusion, hold and wait, no preemption, and circular wait are the key factors
343434

that must be present for deadlock to occur. By understanding these conditions and employing
techniques like deadlock modeling, detection, avoidance, and prevention, operating systems can
minimize the impact of deadlocks and ensure that system resources are used efficiently, processes
can continue executing without interruptions, and the overall system remains responsive.

In summary, deadlock management is essential for ensuring the smooth functioning of modern
operating systems. By recognizing deadlock-prone conditions, using tools like Resource Allocation
Graphs, and applying algorithms such as the Banker's Algorithm, systems can efficiently allocate
resources and avoid, detect, and resolve deadlocks, resulting in better performance and resource
utilization.

Check Your Progress

1. What is deadlock in an operating system?

2. What is the main consequence of deadlock in a multitasking system?

3. What are the four conditions necessary for deadlock to occur in a system?

4. How does mutual exclusion contribute to the occurrence of deadlock?

5. Explain the hold and wait condition in the context of deadlock.

6. What does the "no preemption" condition mean, and how does it affect deadlock?

7. What is the circular wait condition, and how does it contribute to deadlock?

8. Give an example of a system that could experience deadlock under the Coffman conditions.

9. How does the Resource Allocation Graph (RAG) help in detecting deadlock?

10. What is the difference between a request edge and an assignment edge in a Resource
Allocation Graph?

11. How does the "wait-for graph" differ from the Resource Allocation Graph in terms of
62

deadlock detection?

12. What are some possible methods for recovering from a deadlock?

13. Explain how process termination can be used as a recovery method in deadlock situations.

14. What does resource preemption mean, and how is it applied during deadlock recovery?

15. How can the rollback mechanism help in recovering from a deadlock?

16. What is the primary difference between deadlock avoidance and deadlock prevention?

17. How does the Banker's Algorithm help in deadlock avoidance?

18. What is meant by a "safe state" in the context of the Banker's Algorithm?
18181818

19. How can deadlock prevention eliminate one of the Coffman conditions?

20. What is the effect of eliminating circular wait to prevent deadlock, and how is it
implemented?

Unit 8: Memory Management

8.1 Introduction

Memory management in an operating system (OS) involves controlling and coordinating the
computer's memory resources, which include primary memory (RAM) and, in some cases, secondary
storage. The OS is responsible for efficiently allocating and deallocating memory to various programs
and processes. This ensures that each process has the necessary memory to execute while preventing
unnecessary waste. In addition to memory allocation, the OS provides mechanisms to ensure system
stability and maintain process isolation. By effectively managing memory, the OS supports
multitasking, which enables multiple processes to run concurrently without interfering with each

106

other.

One of the primary objectives of memory management is to maximize the use of available memory
1212121212

while minimizing waste. The OS ensures that memory is allocated efficiently so that as many processes
as possible can be executed concurrently without leaving memory unused. Another important
objective is process isolation. This involves ensuring that processes do not interfere with one another’s
memory. By keeping the memory spaces of different processes separate, the OS prevents one process
from accessing or modifying the memory of another, thus maintaining the integrity of the processes
and data.

Memory management also supports multitasking by allowing multiple processes to run at the same
6464

time while sharing memory resources. The operating system ensures that each process has access to
18181818

the memory it requires, while still protecting the memory of other processes from being altered or
accessed. Protection is another critical aspect of memory management, as the OS prevents
unauthorized access to memory. This helps maintain the security of the system by ensuring that no
process can access or tamper with sensitive data or other processes' memory.

Finally, relocation is an essential component of memory management. It involves adjusting the
14141414

program memory references when a program is moved from one memory location to another. This
ensures that the program continues to function correctly, even if its memory location changes during

1313131313

execution. These key objectives—efficient utilization, process isolation, support for multitasking,
protection, and relocation—are all essential for maintaining a stable and secure operating system that
can handle the demands of modern computing.

8.2 Monoprogramming, Fixed Partitions, Relocation, and Protection

Monoprogramming

Monoprogramming is a concept where only one program is executed at a time on a computer system.
In this mode, the system can only handle one process during its execution. This method contrasts with

373737

more advanced systems like multiprogramming, where several processes can run concurrently. In

monoprogramming, while the CPU is actively executing a program, the system remains idle whenever
the process is waiting for input or output. This means the system does not make efficient use of its

108

resources, as the CPU is underutilized during such waiting periods. As a result, monoprogramming is
inefficient, particularly in environments where multiple processes need to be handled simultaneously.

343434

Fixed Partitions

Fixed partitioning is a memory management scheme in which memory is divided into fixed-sized
partitions. Each partition is allocated to a single process, and the system assigns these fixed partitions

1313131313

without regard to the size of the processes being run. This memory allocation strategy creates a set
number of fixed-size memory areas, and each program is loaded into one of these partitions,
depending on its size. However, if a process is smaller than the partition, the leftover memory within
the partition remains unused, leading to wasted memory. Additionally, if a process is too large to fit
into any available partition, it cannot be executed, thus causing limitations in process handling.

This approach is simple and works well for small systems or those that don’t require frequent memory
allocation changes. However, its main disadvantages include internal fragmentation (unused memory
within a partition) and external fragmentation (unused gaps between loaded processes). Furthermore,
the rigid structure of fixed partitions limits flexibility, making it difficult to accommodate processes of
varying sizes efficiently.

Relocation

Relocation is a crucial concept in memory management, allowing programs to be loaded into any
available area of memory, rather than requiring a fixed starting location. This technique is essential
for efficient memory utilization, as it enables the operating system to load processes into various
memory locations based on availability. Relocation involves adjusting the memory addresses used by
a program during loading or execution to reflect its new memory position.

There are different types of relocation. In compile-time relocation, the memory addresses are fixed at
14141414

the time of compiling, meaning that the program must always be loaded into the same memory
location. In load-time relocation, the program is adjusted when loaded into memory, allowing it to be
placed in a different location each time it runs. Finally, execution-time relocation allows for address
adjustments during the execution of the program, providing even greater flexibility.

While relocation helps with memory utilization and enables multitasking, it introduces complexity.
The system must maintain relocation tables, and the addresses must be updated whenever a program
is loaded or during execution. This results in additional overhead and processing requirements, making
the system more complex.

Protection

Protection mechanisms are vital to ensure that processes running on a system cannot interfere with
each other’s memory or resources. Without protection, a program could access or modify the memory
allocated to another program, leading to potential data corruption, security breaches, or system
instability. The primary goal of protection is to ensure the integrity of the operating system and the

1212121212

security of processes running concurrently.

One common protection method involves the use of base and limit registers. These registers define
the starting address and the maximum size of memory that a process can access. The hardware
ensures that any memory access outside of these boundaries results in a protection fault, which can
prevent malicious or errant behaviour. More advanced memory management techniques, such as
paging and segmentation, further enhance protection by dividing memory into smaller units, with
each process having a specific set of pages or segments allocated to it. The operating system tracks
the location of these units through tables, ensuring that each process can only access its allocated

126

memory.

In addition to these methods, protection is also provided through mechanisms like access control lists
72

(ACLs), which define which users or processes can access specific resources. Systems can also assign
different privilege levels to users, with administrators having more control over the system than
regular users. These protection mechanisms ensure that the operating system remains stable and
secure, preventing unauthorized access to sensitive data or critical system resources.

Monoprogramming, fixed partitions, relocation, and protection are fundamental concepts in early
memory management and system design. While each has its strengths, such as the simplicity of
monoprogramming or the flexibility provided by relocation, they also come with limitations, including
inefficiency and complexity. Protection mechanisms are crucial for maintaining system integrity and
security, allowing multiple processes to run without interfering with each other.

8.3 Swapping and Virtual Memory

Swapping

Swapping is a memory management technique used by operating systems to move processes in and
out of physical memory to ensure that the system can manage more processes than can fit in the
available RAM. In a system that uses swapping, when the memory is full, the operating system
temporarily moves one or more processes out of the main memory and onto secondary storage
(typically a hard disk or SSD). This operation frees up space in RAM for other processes that need to
be executed. The swapped-out process can later be swapped back into memory when it is needed
again.

The basic idea behind swapping is that it allows the system to run more processes than can fit into
373737

physical memory at once, making it appear as though there is more memory available than is
physically installed on the system. When a process is swapped out, it is saved to a swap space (a
reserved area of disk), and when it is needed again, it is brought back into memory, replacing another
process if necessary.

While swapping allows the system to handle more processes than the physical memory can hold, it
comes with performance trade-offs. Accessing data from disk is much slower than accessing data from
RAM, so frequent swapping can significantly degrade system performance. This phenomenon is often

14141414

referred to as "thrashing," where the system spends more time swapping processes in and out of
10101010 494949

memory than executing them.

Virtual Memory

Virtual memory is a memory management technique that provides the illusion to programs that they
1313131313

have access to a large, contiguous block of memory, even though the physical memory might be

fragmented or smaller. Virtual memory allows programs to use more memory than is physically
10101010

available by using a combination of RAM and disk space.

In virtual memory systems, each process is given the impression that it has its own dedicated memory
space, which is separate from other processes. This space is typically much larger than the actual
physical memory, and it is managed by the operating system using a technique called paging (or
sometimes segmentation). The idea is that when a program needs more memory than is physically
available, parts of it are stored in a swap space on the disk. These parts are called "pages," and the
operating system swaps them in and out of RAM as needed.

The operating system uses a page table to keep track of which virtual memory addresses correspond
to which physical memory locations. When a process accesses a memory address, the operating
system translates this virtual address to the corresponding physical address in RAM (if the page is
currently in memory). If the page is not in memory, a page fault occurs, and the operating system
retrieves the required page from the disk, loading it into RAM. This process of loading pages into RAM
when needed is known as demand paging.

One of the key benefits of virtual memory is that it allows for more efficient and flexible use of the
available physical memory. Even if a system has limited RAM, virtual memory allows programs to run
as if they have access to a much larger pool of memory. Additionally, since each process is given the
illusion of having its own dedicated memory space, virtual memory provides isolation between
processes, ensuring that one process cannot directly access the memory of another, thus improving
security and stability.

Advantages of Virtual Memory

Virtual memory offers several important benefits:

1. Increased memory capacity: Programs can use more memory than is physically available,
making it possible to run larger programs or more programs simultaneously.

2. Isolation between processes: Each process operates in its own virtual memory space, which
prevents one process from interfering with or accessing the memory of another. This isolation
enhances security and stability.

3. Efficiency in memory usage: Virtual memory allows the operating system to keep only the
most frequently used parts of a program in physical memory, while less frequently used parts
can be swapped out to disk, ensuring efficient use of available RAM.

4. Simplified programming: Since each program operates in its own virtual memory space,
developers do not need to worry about managing memory between different programs. This
simplifies application development and memory management.

Disadvantages of Virtual Memory

While virtual memory provides several advantages, it also has some disadvantages:

1. Performance overhead: Since accessing data from disk is much slower than accessing data
from RAM, excessive use of virtual memory can slow down the system, particularly if the
system is frequently swapping data in and out of memory (a situation called "thrashing").

494949

2. Disk space usage: Virtual memory requires the use of disk space for the swap area. If the disk
space is limited, this can become a bottleneck, leading to reduced performance.

3. Complexity: Managing virtual memory introduces additional complexity into the operating
system, including the need to track page tables, handle page faults, and manage memory
efficiently to avoid thrashing.

Swapping vs Virtual Memory

While swapping and virtual memory are both techniques used to extend the apparent amount of
available memory in a system, they differ in their implementation and the scale at which they operate.

➢ Swapping refers specifically to moving entire processes in and out of physical memory,
typically when there is not enough memory to run all processes simultaneously. It works on

1313131313

the process level, swapping out entire programs.

➢ Virtual memory, on the other hand, is a more fine-grained system that divides memory into
smaller units (pages) and swaps those pages in and out of physical memory as needed. Virtual
memory provides each process with a much larger address space and uses a combination of
physical memory and disk storage to give the appearance of a larger contiguous memory
space.

Swapping and virtual memory are essential concepts in modern memory management. Swapping
allows the system to handle more processes than can fit in memory by temporarily moving them to
secondary storage, while virtual memory provides an abstraction that enables processes to use more

10101010

memory than physically available by dynamically swapping parts of programs in and out of RAM. While
both techniques extend the usable memory, they come with trade-offs in terms of performance and
complexity.

8.4 Paging

Paging is a memory management scheme that eliminates the need for contiguous memory allocation,
thereby avoiding problems such as fragmentation. In paging, memory is divided into fixed-size blocks
called "pages" in virtual memory, and "frames" in physical memory. When a process is executed, its
memory is divided into pages, and these pages are loaded into available frames in physical memory.
The operating system maintains a page table to map virtual pages to physical frames.

How Paging Works

In a system using paging, the process is divided into pages of equal size. The size of each page is
determined by the system and is typically a power of two (e.g., 4 KB). The physical memory is also
divided into frames, which are of the same size as the pages. When a program is loaded into memory,
its pages are placed into any available frames in physical memory, regardless of whether the frames
are contiguous. The operating system then uses a page table to track where each page of the process
is located in physical memory.

When a process accesses a memory address, it generates a virtual address consisting of two parts:

1. Page Number: This part of the virtual address identifies which page the memory access refers
to.

2. Page Offset: This part specifies the exact location within the page.

The page number is used to index into the page table to find the corresponding physical frame
number. The page offset remains unchanged, as it is already a valid address within the frame.

Combining the frame number from the page table with the page offset gives the physical address in
18181818

memory.

Page Table

The page table is a data structure maintained by the operating system that holds the mapping of
virtual page numbers to physical frame numbers. Each entry in the page table contains information
about where the corresponding page is located in physical memory. If a page is not currently in
memory, the page table may indicate that the page is on disk (in swap space), and the operating
system will load it into physical memory when needed.

The page table may also include additional information, such as:

➢

➢

➢

Valid/Invalid Bit: This bit indicates whether the page is currently in memory. If a page is invalid
(not in memory), a page fault occurs, and the system must load the page from disk.

Protection Bits: These specify the permissions for accessing the page, such as read, write, or
execute permissions.

Reference Bit: This bit is used for page replacement algorithms to track which pages have been
accessed recently.

Advantages of Paging

Paging provides several advantages over previous memory management techniques, such as
contiguous memory allocation:

1. No External Fragmentation: Since pages can be loaded into any available frame in physical
494949

memory, there is no need for contiguous blocks of free memory. This eliminates external
373737

fragmentation, where free memory is scattered in small blocks that are too small to allocate
to a process.

2. Efficient Memory Utilization: Paging allows for more efficient use of memory. It enables the
system to load only the necessary parts of a program into memory, while less frequently used
pages can be swapped out to disk, making it possible to run programs that are larger than the
available physical memory.

3. Simplifies Memory Allocation: Memory management is simpler in paging because the
operating system only needs to manage fixed-size units of memory, both in virtual and
physical memory.

4. Isolation of Processes: Since each process has its own page table, processes are isolated from
1212121212

each other. This isolation improves security and stability, as one process cannot access the
memory of another process without explicit permission.

Disadvantages of Paging

While paging offers significant advantages, it also has some drawbacks:

1. Internal Fragmentation: Although paging eliminates external fragmentation, there can still be
internal fragmentation. This occurs if the last page of a process is not fully utilized, leading to
wasted space within the page.

2. Overhead: The use of a page table introduces additional overhead. Every memory access
requires the operating system to first look up the page table to find the corresponding frame
in physical memory. This lookup incurs extra time, especially if the page table is large.

3. Page Table Management: Maintaining the page table can become complex, especially for
systems with large amounts of virtual memory. The page table itself consumes memory, and
managing large page tables can lead to inefficiencies.

4. Disk I/O: When a page is not in memory and must be retrieved from disk (a page fault), it can
10101010

slow down the system significantly. If the system is frequently accessing disk to load pages, it
may lead to performance degradation known as "thrashing."

Paging and Virtual Memory

Paging is a critical component of virtual memory. Virtual memory allows programs to use more
memory than is physically available by swapping pages in and out of disk storage. With paging, the

1212121212

system can load only the pages that are currently needed into physical memory, while the rest of the
program can remain on disk. This enables large programs to run efficiently on systems with limited
physical memory and allows multiple programs to share the same physical memory space.

8.5 Page Replacement Algorithms

Page replacement algorithms are crucial in managing memory effectively when a page fault occurs. A
page fault occurs when a process tries to access a page that is not currently in physical memory. In
such situations, the operating system must decide which page to evict to make space for the new
page. Below are detailed descriptions of various page replacement algorithms.

1. Not-Recently-Used (NRU) Page Replacement Algorithm

The Not-Recently-Used (NRU) algorithm is based on the assumption that pages recently accessed are
more likely to be used again soon. In this scheme, each page in memory has a reference bit that is set
when the page is accessed, either for reading or writing.

Whenever a page is accessed, the operating system sets its reference bit to 1. Over time, as pages are
used, the reference bits for pages that have not been accessed for a certain period get cleared. When
a page fault occurs, the algorithm scans the memory and looks for pages with cleared reference bits
to replace, assuming these pages are less likely to be used again soon.

6464

The limitation of NRU is that it doesn't take into account the frequency of access or the length of time
since a page was last used. It only looks at whether a page has been accessed recently, which can lead
to inefficient replacements, especially when a page was accessed a long time ago but will be accessed
again shortly.

2. First In, First Out (FIFO) Page Replacement Algorithm

The First In, First Out (FIFO) algorithm is one of the simplest page replacement strategies. In FIFO,
pages are arranged in a queue, with the first page loaded into memory placed at the front of the

14141414

queue, and the most recently loaded page placed at the rear.

When a page fault occurs, the page at the front of the queue (the oldest page) is selected for
replacement. After replacing the page, the new page is added to the back of the queue. This means
that the page that has been in memory the longest is the first to be replaced, regardless of how
frequently or recently it has been used.

While FIFO is easy to implement, it is often inefficient. The algorithm does not consider how frequently
a page has been used or how recently it was accessed, which can result in poor performance. This is
known as Belady’s anomaly, where increasing the number of page frames can actually lead to more
page faults in some cases.

3. Second Chance Page Replacement Algorithm

The Second Chance algorithm is an enhancement of the FIFO approach. It introduces the concept of a
"second chance" for pages that have been in memory for a long time but were recently accessed.

In Second Chance, each page has an associated reference bit. Initially, all pages have their reference
bits set to 0. When a page is accessed, its reference bit is set to 1. When a page fault occurs, the
algorithm checks the page at the front of the FIFO queue. If the reference bit of the page is 0, it is
replaced. If the reference bit is 1, the page is given a second chance: the reference bit is cleared, and
the page is moved to the back of the queue.

This improvement helps avoid replacing pages that were recently accessed, giving them another
opportunity to remain in memory before being evicted. However, it still does not account for the
frequency of access or how long it has been since a page was last used, which can still result in
suboptimal performance in some cases.

4. The Clock Page Replacement Algorithm

The Clock algorithm is a more efficient version of the Second Chance algorithm. In this method, pages
are arranged in a circular queue, and the operating system uses a "hand" that points to the next page
to be considered for replacement.

When a page is accessed, its reference bit is set to 1. When a page fault occurs, the clock hand moves
in a circular fashion around the queue. If the page that the hand points to has a reference bit set to 1,
the bit is cleared, and the hand moves to the next page. If the page has a reference bit of 0, it is
replaced with the new page.

This circular scanning mechanism is similar to the second chance, but it is more efficient because the
clock hand doesn't need to move all the way to the back of the queue for pages that are accessed
frequently. This reduces the overhead involved in scanning the entire queue, making the Clock
algorithm faster and more efficient than Second Chance. Still, the algorithm doesn't consider how
often a page is accessed, which means it could still perform poorly in some situations.

5. Least Recently Used (LRU) Page Replacement Algorithm

The Least Recently Used (LRU) algorithm is based on the principle of temporal locality, which states
that pages that have been used recently are more likely to be used again soon. The LRU algorithm

aims to replace the page that has not been used for the longest time, under the assumption that pages
79

that haven't been used for a while are less likely to be needed in the immediate future.

To implement LRU, the operating system needs to track the order in which pages are accessed. This
can be done by either maintaining a list of pages in memory or using a counter to track the time of
last access for each page. When a page is accessed, it is moved to the most recent position in the list,
or its counter is updated. When a page fault occurs, the page that has not been accessed for the

103

longest time (i.e., the least recently used page) is replaced.

LRU is often considered one of the most efficient algorithms because it directly uses the principle of
temporal locality. However, it comes with the disadvantage of requiring more overhead for tracking
access history, which can be costly in terms of memory and CPU cycles, especially in systems with large
numbers of pages.

8.6 Design and Implementation Issues in Paging Systems

Paging is a memory management scheme that eliminates the need for contiguous allocation of
91

physical memory. In a paging system, memory is divided into fixed-sized blocks called pages, and
physical memory is divided into blocks of the same size called frames. Pages from a process are
mapped to frames in physical memory, and the operating system manages this mapping. While paging
solves many issues associated with memory allocation, there are several design and implementation

60

issues that must be addressed to make the paging system efficient and reliable.

1. Page Table Management

One of the fundamental issues in paging systems is managing the page table. The page table is
responsible for mapping virtual pages to physical frames in memory. The design of the page table can
be quite complex, and there are several concerns:

5252

➢ Size of the Page Table: The page table can grow very large if the virtual address space is large
or if the page size is small. For example, with a large process address space (e.g., 32-bit or 64-
bit addresses), a page table could become very large, leading to significant memory overhead.

➢ Hierarchical Page Tables: To mitigate the large size of page tables, multi-level (hierarchical)
page tables are often used. In this method, the page table is split into multiple levels, with
each level mapping part of the virtual address space. This reduces memory usage and
overhead since only the portions of the page table that are actually needed are created.

85

➢ Inverted Page Tables: In an inverted page table system, there is only one table for all
processes, with one entry for each frame of physical memory. This approach reduces the
memory overhead of having a page table for each process, but the translation process may
take longer.

2. Translation Lookaside Buffer (TLB)
30

The Translation Lookaside Buffer (TLB) is a high-speed cache used to store recent translations from
virtual memory addresses to physical memory addresses. Without a TLB, every memory access would
require an access to the page table, which can significantly slow down memory operations. Therefore,
TLB miss and TLB hit management are crucial for the system's performance.

➢ TLB Miss Handling: When a virtual address is not in the TLB (a miss), a page table lookup must
be performed. This can result in a delay because page tables can be stored in slower main
memory.

➢

➢

TLB Flush: The TLB may need to be flushed periodically or when the operating system switches
processes. This can lead to inefficiencies if the TLB is not managed carefully.

TLB Optimization: Techniques like TLB prefetching and associative mapping can help reduce
TLB misses and improve overall system performance. The TLB should be designed to be large
enough to hold frequently used translations, but not so large that it incurs excessive memory
or cache management overhead.

3. Page Fault Handling

A page fault occurs when a process tries to access a page that is not currently in physical memory.
When a page fault happens, the operating system must bring the page into memory, which can be an
expensive process in terms of time and resources. Several issues need to be addressed in efficient
page fault handling:

➢

➢

➢

Page Replacement Algorithms: Deciding which page to replace when a page fault occurs is
critical for system performance. Different page replacement algorithms (such as FIFO, LRU,
Clock, and others) must be carefully implemented to ensure efficient memory usage and to
minimize the number of page faults.

Disk I/O Operations: When a page fault occurs, it may require a disk I/O operation to read the
required page into memory from disk (typically from swap space or a paging file). These
operations are much slower than memory accesses, so reducing disk I/O is crucial for system
performance.

Concurrency Issues: Multiple processes might be waiting for the same page to be loaded into
memory, leading to potential deadlocks or contention issues. Careful management of page
faults is required to avoid these problems.

4. Fragmentation

While paging eliminates external fragmentation (the condition where free memory is broken into
small, non-contiguous blocks), it can still suffer from internal fragmentation. This occurs when a
process's last page does not completely fill its allocated frame, leading to unused space.

➢ Internal Fragmentation: If the page size is large, a lot of unused space can be wasted within
the last page of each process. This leads to inefficient use of memory.

➢ Minimizing Fragmentation: Some systems may reduce internal fragmentation by using smaller
pages, though this can increase the overhead in terms of the size of the page tables and

414141

increase the number of page faults.

5. Segmentation vs. Paging

In systems that support both segmentation and paging, the operating system must decide which
109

technique to use for different types of data. While segmentation divides memory into logical segments
(such as code, data, stack, etc.), paging divides memory into fixed-size blocks.

➢ Combining Segmentation and Paging: Some systems combine segmentation and paging to
take advantage of both techniques. In these systems, each segment is divided into pages. This

reduces the fragmentation issues of segmentation while also providing more efficient
memory allocation than pure paging systems.

➢ Segment Table Management: In such systems, managing both the segment table and the page
table requires additional bookkeeping and introduces complexity.

6. Memory Protection

Paging systems also support memory protection, ensuring that processes cannot access other
processes' memory or perform illegal operations on their own memory. Memory protection
mechanisms are implemented by setting access rights (such as read, write, or execute) on pages.

➢ Access Control: The page table entries typically store information on whether a page is read-
only, writable, or executable. Access violations result in traps that the operating system can
handle, often by terminating the process or invoking a handler.

➢ Preventing Illegal Access: Protection bits in the page table entries help ensure that processes
cannot overwrite other processes' memory spaces, which is vital for system security and
stability.

7. Swapping and Thrashing

Swapping occurs when a process is moved out of memory to disk to make space for other processes,
5151

and later brought back into memory. While swapping can help maintain the illusion of a large amount
of available memory, it can also cause thrashing, a situation where the system spends more time
swapping pages in and out of memory than performing useful computation.

➢ Thrashing: Thrashing can occur when the system is overcommitted, and processes
continuously access pages that are not in memory. This leads to frequent page faults and disk
I/O operations, degrading the system's performance.

➢ Prevention and Management: The operating system needs mechanisms to detect and prevent
thrashing. This can involve adjusting the degree of multiprogramming (the number of
processes in memory), improving page replacement algorithms, and tuning the system’s
memory management policies.

8. Implementation Overhead

The overall performance of paging systems is influenced by the overhead associated with managing
414141

memory. This includes the time it takes to manage page tables, handle page faults, maintain TLBs, and
perform other memory-related operations. The operating system must minimize these overheads to
maintain system efficiency.

➢ Context Switching Overhead: When switching between processes, the operating system must
load and unload page tables. This can introduce significant overhead in systems with large
address spaces.

➢ Efficient Data Structures: Choosing the right data structures (e.g., hash tables for TLB entries
or balanced trees for multi-level page tables) is essential for reducing the overhead in paging
systems.

8.7 Segmentation

Segmentation is a memory management scheme that divides a program into different segments, each
of which can be treated as a separate unit. Unlike paging, which divides memory into fixed-size blocks
(pages), segmentation divides the memory into variable-sized blocks. These blocks, or segments, can
correspond to logical units of a program such as functions, arrays, data structures, stacks, or code.

The segmentation model aims to provide a more natural way to divide a program because segments
reflect the logical structure of a program. This contrasts with paging, which divides memory in a way
that may not correspond to the program's logical structure.

Segmentation allows for more flexible memory allocation and provides benefits in terms of program
design and memory management. Below is a detailed explanation of segmentation, its advantages,
disadvantages, and key concepts.

Key Concepts of Segmentation

In a segmented memory system, a program is divided into different segments based on its logical
structure. Common types of segments include code segments, which contain the instructions of the
program; data segments, which contain global and static variables; stack segments, which store local

8484

variables and function call information; and heap segments, which store dynamically allocated
memory during runtime. Each segment has a segment identifier (SID) and an offset to locate a
particular instruction or data item within that segment.

When a process references memory, it uses a logical address that is split into two parts: the segment
number (SID) and the offset (location within the segment). The segment number is used to index into
the segment table, where the base address is retrieved. The offset is added to this base address to
produce the physical address.

A segment table is used to map logical addresses (segment numbers and offsets) to physical memory
addresses. Each entry in the segment table contains a base address (the starting address of the
segment in physical memory) and a limit (the size of the segment, ensuring the program cannot access
memory outside its segment).

Advantages of Segmentation

Segmentation allows the programmer to think in terms of program modules or logical divisions (such
as functions or arrays), rather than arbitrary chunks of memory, making it easier to write and maintain
large programs.

Segmentation facilitates sharing of code or data between processes. For example, multiple processes
can share the same code segment (if the code is read-only), reducing memory usage and improving

5151

efficiency.

Each segment can have its own access rights (read, write, execute), providing more granular
33

protection. For example, the code segment can be marked as read-only, while the data segment can
be marked as both read and write, which helps prevent segmentation faults. It also allows for
modularity, as each segment can be independently modified or relocated, and a process can be loaded
in different memory locations without affecting the segmentation model.

Unlike paging, which requires fixed-size blocks, segmentation allows for dynamic allocation of
memory. A segment can grow or shrink based on the requirements of the program, making it more
efficient in some scenarios.

Segments like the stack and heap can grow dynamically as the program executes, making it easier to
support data structures that grow over time (e.g., linked lists, dynamic arrays, etc.).

Disadvantages of Segmentation

A major drawback of segmentation is the potential for external fragmentation. Over time, as segments
are allocated and freed, the physical memory may become fragmented into small, non-contiguous
free blocks, making it difficult to allocate large segments. This can lead to inefficient use of memory,
especially in systems with many active processes.

Address translation in a segmented memory system is more complex than in a paged system because
it involves two components: the segment number and the offset. This requires the operating system
to maintain and manage a segment table for each process, which adds overhead. Segment tables can
become large, especially in systems with many segments, and translating logical addresses to physical
addresses can be time-consuming.

Because segment sizes are variable, the segment tables themselves can become large if there are
many segments, particularly in large programs with many different logical divisions.

As segments can vary in size, it can be difficult to allocate contiguous blocks of memory, which may
hinder performance when multiple large segments need to be allocated simultaneously.

Segmentation vs. Paging

While both paging and segmentation are memory management schemes, they differ in several key
aspects.

In paging, memory is divided into fixed-size pages and frames, whereas in segmentation, memory is
divided into variable-sized segments based on the logical structure of the program.

In paging, a logical address is divided into a page number and an offset within that page, whereas in
segmentation, the logical address is divided into a segment number and an offset within that segment.

Paging eliminates external fragmentation but may lead to internal fragmentation, while segmentation
8484

eliminates internal fragmentation but can suffer from external fragmentation.

Paging can lead to memory wastage due to internal fragmentation, whereas segmentation allows
more flexible memory allocation but can cause external fragmentation.

Segmentation provides a more natural way of dividing memory according to the program's logical
structure (functions, arrays, etc.), while paging focuses on dividing memory into fixed blocks without
regard to the program’s structure.

8.8 Unit Summary
73

In this unit, we have explored the various memory management techniques that help ensure efficient
utilization of system resources. We began with an introduction to memory management concepts,
followed by different memory allocation schemes such as monoprogramming, fixed partitions, and
relocation. We then discussed advanced techniques like swapping, virtual memory, paging, and
segmentation, focusing on how these methods address challenges like fragmentation, protection, and
efficient memory utilization. We also explored page replacement algorithms and design and
implementation issues in paging systems. By understanding these techniques, we can ensure that
memory resources are managed effectively, allowing systems to run more efficiently and securely.

Check Your Progress

1. What is the primary goal of memory management in an operating system?

2. Describe the concept of monoprogramming. How does it impact system performance?

3. What is fixed partitioning, and how does it differ from dynamic partitioning?

4. How does memory relocation work in a system? Why is it important?

5. Explain the concept of memory protection. How does it ensure system stability?

6. What is swapping, and when is it used in an operating system?

7. How does virtual memory allow programs to run larger than physical memory?

8. What is the difference between physical memory and virtual memory?

9. Describe the process of paging. How does it manage memory efficiently?

10. What is internal fragmentation, and how does paging help to minimize it?

11. Explain the function of a page table in a paging system.

12. What are the main page replacement algorithms, and how do they help manage memory?

13. Describe the FIFO page replacement algorithm and its advantages and disadvantages.

14. What is Least Recently Used (LRU) page replacement, and why is it preferred over FIFO?

15. What is thrashing in the context of memory management, and how can it be prevented?

16. How do multi-level page tables help address memory management issues in paging systems?

17. What is segmentation, and how does it differ from paging in memory management?

18. How does segmentation help in organizing memory more logically for processes?

19. What is external fragmentation, and why is it a problem in segmentation?

20. What are the main advantages and disadvantages of segmentation compared to paging?

Unit 9: I/O Systems

9.1 Introduction

The I/O (Input/Output) system in an operating system is a critical component responsible for managing
the flow of data between the system and the outside world, enabling interaction with external devices
such as hard drives, keyboards, monitors, printers, network interfaces, and more. The operating
system’s I/O system abstracts the hardware complexity of devices and provides a unified, efficient
interface for users and applications to perform I/O operations.

The design and implementation of I/O systems are fundamental to the performance, scalability, and
71

usability of modern computing systems. Effective I/O management ensures efficient data transfer,
error handling, and synchronization between devices and processes.

Key Components of I/O Systems

1. I/O Devices: These include any hardware devices through which data is input into or output
from the system. Examples include:

➢

➢

➢

➢

Input Devices: Keyboards, mice, scanners.

Output Devices: Monitors, printers, speakers.

Storage Devices: Hard drives, solid-state drives, optical drives.

Network Devices: Network cards, routers.

2. Device Drivers: A device driver is a program that allows the operating system to communicate
with the hardware device. It acts as an intermediary between the hardware and the software
applications, providing the necessary instructions for device operations. Drivers handle
device-specific details such as addressing, control signals, and data formats.

3. I/O Subsystem: The I/O subsystem includes the software components that manage the
interaction between the OS and I/O devices. It includes the device drivers, device controllers,
and kernel-level software that handles I/O requests and scheduling.

4. I/O Channels: I/O channels are the pathways that allow the transfer of data between memory
and I/O devices. These channels may involve direct memory access (DMA), which allows data
to be transferred directly to/from memory without involving the CPU, reducing system
overhead.

I/O System Architecture

The I/O system architecture typically includes multiple layers that facilitate efficient communication
between the operating system, applications, and hardware devices:

1. User-Level Interface: The user interacts with the system via an interface, such as system calls,
which request I/O operations like reading data from a file or writing to a device.

2. I/O Buffers: I/O buffers temporarily store data during transfer between the user application
107

and the device. Buffering helps mitigate the speed differences between I/O devices and
processors, ensuring that processes are not stalled while waiting for I/O operations to
complete.

3. Interrupt Handling: Interrupts are signals sent from I/O devices to the CPU, indicating that the
device has completed an I/O operation or requires attention. The operating system handles
interrupts to suspend current tasks, handle the device request, and resume normal operation.
This mechanism improves efficiency by allowing the CPU to focus on other tasks rather than

414141

waiting for I/O operations to complete.

4. Device Controllers: A device controller is hardware that manages the communication between
the OS and an I/O device. The controller performs tasks like converting data formats,
performing error checking, and managing device-specific operations.

9.2 I/O Hardware Principles

Input/Output (I/O) hardware is essential for enabling communication between the computer and the
external environment. It facilitates the transfer of data to and from peripherals, such as keyboards,
disks, printers, network devices, and other components, and the computer system. The design and
management of I/O hardware are governed by several principles, including efficiency, flexibility, and
protection. Below are the core principles of I/O hardware.

I/O Devices and Device Types

I/O devices are categorized based on their functionality and the type of data they handle. Input
devices, such as keyboards, mice, and scanners, send data into the computer. Output devices, like
monitors and printers, display or output data from the computer. Storage devices, including hard
drives and SSDs, store data for long-term access. Communication devices, such as network adapters
and serial ports, enable network or inter-device communication.

Device Communication and Data Transfer Modes

I/O hardware facilitates communication using various data transfer modes. These modes determine
how data is moved between the processor, memory, and I/O devices. The most common transfer
modes include:

Programmed I/O (PIO): In Programmed I/O, the CPU directly controls data transfer between
memory and I/O devices. The CPU performs the data transfer by reading or writing data to I/O ports
or memory-mapped I/O locations. However, the drawback is that the CPU is actively involved in the
transfer, which can waste processing time and reduce system performance.

Interrupt-Driven I/O: In this mode, the CPU is interrupted when an I/O device requires attention,
rather than the CPU actively polling the device. When an I/O device is ready to transfer data, it sends
an interrupt signal to the CPU. The CPU suspends its current task, processes the interrupt, and
resumes its previous task after handling the I/O request. This method is more efficient than PIO
since the CPU is not wasting cycles polling devices. However, interrupt handling can introduce
overhead, especially when many devices generate interrupts.

Direct Memory Access (DMA): In DMA, a special hardware controller (DMA controller) directly
transfers data between I/O devices and memory, bypassing the CPU. The DMA controller manages
the transfer independently, with the CPU being notified only when the transfer is complete. This
technique improves overall system efficiency by freeing the CPU to perform other tasks while data is
transferred. However, DMA introduces additional hardware complexity, and the system must ensure
data consistency between memory and I/O devices.

I/O Ports and Buses

I/O ports and buses are the physical communication channels through which I/O devices connect to
the CPU and memory. These include:

Memory-Mapped I/O: In memory-mapped I/O, devices are mapped into the system's memory
address space. I/O devices are accessed using normal memory instructions (load/store), making it
easier to program but requiring careful address allocation.

Port-Mapped I/O (or Isolated I/O): In this scheme, I/O devices are accessed via specific instructions,
such as IN and OUT on x86 systems, which are distinct from memory accesses. The system uses
special I/O ports to interact with devices.

System Buses: The bus is a shared communication path that transfers data, addresses, and control
signals between components. Key types of buses include the data bus, which carries the actual data
between the CPU, memory, and I/O devices; the address bus, which carries the address to or from
the device being accessed; and the control bus, which carries control signals to synchronize
operations between components.

I/O Controllers

I/O controllers are specialized hardware components that manage data exchanges between the CPU
and I/O devices. They are responsible for converting signals between the CPU and the I/O device,
handling protocol-specific details, and managing data buffering. Device-specific controllers are
tailored to particular device types, such as disk controllers and network interface cards, and manage
the peculiarities of each device, including error checking, device state, and data formatting. General-
purpose I/O controllers, such as USB controllers and PCI controllers, manage communication
between the CPU and multiple types of devices.

Interrupt Handling

Interrupts are an essential mechanism in modern systems for efficiently managing I/O operations.
The CPU can be interrupted to handle time-sensitive I/O events, such as when an I/O device requires
attention. The interrupt vector is a table that holds the addresses of routines to handle various types
of interrupts. When an interrupt occurs, the CPU uses this table to jump to the correct interrupt
handler. Some systems assign priorities to interrupts, allowing the CPU to handle more critical
interrupts first, while lower-priority interrupts can be deferred. After the CPU processes an interrupt,

it typically sends an acknowledgment signal to the device, informing it that the interrupt has been
handled, allowing the device to resume its operations.

I/O Buffering

Buffering is the temporary storage of data in memory to smooth out the differences in the speed of
data transmission between the CPU and I/O devices. Buffering helps prevent system slowdowns due
to the disparities in data transfer rates between devices and the processor. Single buffering involves
a single buffer where data is written by the device and read by the CPU. Double buffering uses two
buffers: one for the device to write data into and another for the CPU to read from. This allows
continuous data transfer, reducing wait times. Circular buffering is often used in streaming
applications, where data is written and read in a circular manner, ensuring a constant flow of data.

I/O Protection and Isolation

Since I/O devices can directly interact with the memory and CPU, it is important to isolate and
protect memory and the CPU from unintentional access or misuse. Modern systems use memory
protection mechanisms, such as segmentation or paging, to prevent I/O devices from accessing
sensitive areas of memory. Privileged instructions restrict I/O operations to certain privileged
modes, preventing normal user programs from directly accessing I/O devices. The operating system
enforces access control policies to determine which processes can access specific I/O devices and
their functionalities.

I/O Scheduling

Efficient I/O management is critical for system performance, especially when multiple processes
need to access I/O devices. I/O scheduling is the mechanism by which the operating system
determines the order in which I/O requests are served. In the First-Come, First-Served (FCFS)
approach, requests are served in the order they arrive. Shortest Seek Time First (SSTF) serves the
request closest to the current head position in disk scheduling, reducing seek time. The Scan
Scheduling (Elevator Algorithm) moves the disk arm in one direction, servicing requests along the
way, and reverses direction when it reaches the end. Priority Scheduling ensures that I/O requests
from higher-priority processes are served first.

Direct Memory Access (DMA)

DMA is a technique that allows certain I/O devices to directly access main memory without the
involvement of the CPU, improving the system’s efficiency. The DMA controller is dedicated
hardware that manages data transfers between memory and I/O devices, ensuring data integrity and
consistency. In cycle stealing, the DMA controller temporarily "steals" cycles from the CPU to
perform memory operations, without interrupting the CPU. In block mode, the DMA controller
performs the entire data transfer in one continuous block, allowing the CPU to perform other tasks
during the transfer.

Performance Considerations in I/O Systems

I/O system performance is critical for overall system efficiency. Throughput refers to the amount of
5252

data transferred over a period of time, such as bytes per second. Minimizing latency, the delay
before data transfer begins, is crucial for applications requiring real-time or interactive processing,
such as gaming or video streaming. For systems with many I/O requests, managing queues for
requests, like disk scheduling, ensures that devices are efficiently utilized and bottlenecks are
avoided.

I/O hardware principles are crucial for understanding how computers interact with the external
70

world and ensuring that data is efficiently and securely transferred between the system and I/O
devices. By employing strategies like interrupt handling, DMA, buffering, and scheduling, systems
can manage I/O operations efficiently. Proper I/O management ensures that the CPU is free to
perform tasks without getting bogged down by low-level data transfer operations, thus enhancing
overall system performance and resource utilization.

9.3 I/O Software Principles

The principles of I/O (Input/Output) software design form the backbone of efficient, reliable, and
maintainable systems that manage hardware devices and data transfer. These principles help
abstract the complexities involved in hardware interaction, ensuring seamless I/O operations for
applications. The key principles of I/O software are essential for building a robust and adaptable
system:

Device Independence is a fundamental principle where applications should function with a variety of
devices without needing to understand the specific characteristics of each one. This principle aims to
provide a uniform interface, allowing software to read or write data without distinguishing between
different devices, such as files, printers, or network interfaces. Achieving device independence
typically involves using abstractions like file systems, device drivers, and standardized application
programming interfaces (APIs).

Uniform Naming ensures that devices and files follow a consistent naming scheme, regardless of
their physical or logical properties. The primary goal is to simplify access to devices and data,
treating all I/O resources as objects that can be referenced uniformly. For instance, in Unix-like
systems, devices are represented as files, such as "/dev/sda," making them easier to interact with
and manage.

Error Handling is a critical principle that ensures the I/O system detects, reports, and recovers from
errors effectively. The goal is to maintain system robustness and user-friendliness even when
hardware or software failures occur. Effective error handling involves providing meaningful error
messages, allowing retry mechanisms, and preventing system crashes.

Buffering involves the temporary storage of data in memory to accommodate differences in speed
between producers and consumers of data. By using buffers, I/O systems can enhance performance
and manage data flow efficiently. For example, when reading a large file, a buffer can temporarily
store data, minimizing the number of disk reads and thus improving overall performance.

Caching is another important concept, where frequently accessed data is stored temporarily in fast-
access memory. The goal is to reduce latency and improve the speed of I/O operations by avoiding
repeated accesses to slower devices. For instance, disk caching stores recently accessed blocks of
data in RAM, enabling faster subsequent access.

Asynchronous I/O enables operations to proceed independently of the main program flow. This
principle improves system responsiveness by allowing programs to perform other tasks while waiting

86

for I/O operations to complete. Examples of asynchronous I/O include non-blocking reads or writes
and the use of callback mechanisms in APIs.
89

Transparency ensures that the underlying complexities of I/O operations are hidden from the user
or application developer. This simplifies application development by providing high-level interfaces
that abstract hardware details. For instance, users might interact with logical file paths rather than
dealing directly with raw disk addresses, making I/O operations easier to handle.

Modularity in I/O software involves organizing the system into independent modules that can be
developed, tested, and maintained separately. This principle enhances reusability and simplifies
debugging by separating concerns. For example, device drivers, kernel I/O subsystems, and user-
space libraries can be treated as distinct components that interact with each other.

Performance Optimization is an essential principle, where the I/O system must maximize
throughput and minimize latency. To achieve this, approaches such as reducing overhead through
efficient driver design, using techniques like Direct Memory Access (DMA) to offload tasks from the
CPU, and optimizing data transfer sizes for hardware constraints are used to enhance I/O
performance.

Portability ensures that I/O software can function across different hardware and operating systems
with minimal changes. This principle reduces development efforts and extends the software’s
lifespan by using standardized interfaces and avoiding hardware-specific code in higher layers.

Security and Protection are essential for maintaining the integrity of data and preventing
unauthorized access during I/O operations. This is achieved through measures like access control,
permissions, authentication, and encryption, ensuring that only authorized entities can access
devices and data during I/O operations.

These principles provide the foundation for I/O systems that are flexible, efficient, and adaptable to
varying hardware and application requirements. They help ensure that I/O operations are reliable
and robust while offering high performance.

I/O Software Layers are structured to manage the complexity of interfacing with hardware devices,
abstracting hardware details, and providing functionality in stages. This layered approach separates
concerns, making the system modular and easier to maintain. The primary layers of I/O software are
as follows:

At the user-level I/O software, the highest-level interface for applications to perform I/O operations
is provided. This layer abstracts hardware details and offers APIs or system calls for file operations,
network communication, and more. It is responsible for managing buffering for application data and
offering portable interfaces for handling devices uniformly. For instance, functions like read(),
write(), and open() are part of user-level I/O software in POSIX-compliant systems.

The Device-Independent I/O Software layer handles operations that are not specific to any
particular hardware device. It provides a uniform naming and access interface for devices, treats
devices as files, and implements functionalities like spooling for printers, caching, and buffering. It
also handles error detection, retries, and maps logical device names to physical devices. Examples of
this layer include file system layers and device managers.

Device Drivers act as the interface between the operating system and specific hardware devices.
These drivers contain device-specific code that communicates directly with the hardware, translating
high-level I/O requests into low-level commands understandable by the hardware. Device drivers are
responsible for initializing and managing hardware resources, performing low-level operations, and
handling communication between the OS kernel and the device. Examples include disk drivers,
network interface card drivers, and GPU drivers.

The Interrupt Handlers layer responds to hardware-generated interrupts that signal the completion
of an I/O operation or an error. It executes in response to an interrupt triggered by the device, works
at a low level, and is responsible for acknowledging interrupts, determining their source, and passing
information about completed operations to higher layers.

At the Hardware (Physical) Layer, the actual hardware devices and their controller interfaces exist.
This layer includes components like hard disks, USB devices, network cards, keyboards, and
monitors. These physical devices perform the actual data transmission and reception, generate
interrupts to signal task completion, and provide access to device registers for communication with
drivers.

The layered structure of I/O software ensures that application-level operations are efficiently
processed by transitioning through the different software layers. First, an application requests an I/O
operation through a high-level API. Then, device-independent processing in the OS resolves the
request and ensures that devices are treated consistently. The device driver converts the request
into device-specific commands, while interrupt handlers respond to completion signals. Finally, the
hardware executes the operation, such as reading from a disk or sending a packet over the network.

The advantages of layered design include increased modularity, reusability, abstraction, and easier
debugging. Each layer can be developed and maintained independently, and the device-independent
layers can be reused across various devices. Applications do not need to deal with hardware
specifics, and problems can be isolated to specific layers, improving overall system efficiency and
reliability. This design is central to modern operating systems, making I/O operations efficient,
scalable, and reliable.

9.4 Disks

Disks play a vital role in modern computer systems, serving as secondary storage devices that retain
data even when the power is turned off. This section delves into the key components of disk
hardware, the process of disk formatting, various disk arm scheduling algorithms, methods of error
handling, the concept of track-at-a-time caching, and the utilization of RAM disks.

Disk Hardware

Disks are essential for long-term data storage, and their design revolves around several key
components. The disk's surface is made up of platters, which are circular disks coated with a
magnetic material. Data is stored on these platters in the form of magnetic patterns. The surface of
each platter is divided into concentric circles known as tracks. Each track is further subdivided into
sectors, which are small, fixed-size storage units. The platters are rotated by a spindle that turns
them at a constant speed, typically measured in revolutions per minute (RPM), such as 7200 RPM.
To read or write data on these platters, a read/write head is positioned by an actuator arm, which
moves across the platters to access the required data. The actuator arm is responsible for directing
the head to the correct track. The disk controller is responsible for managing communication
between the disk and the computer, ensuring that data is transferred accurately and efficiently.

Disk Formatting

Disk formatting is the process of preparing a disk for data storage by organizing it into a logical
structure. There are two types of formatting: low-level and high-level formatting. Low-level
formatting, also known as physical formatting, divides the disk into sectors and tracks and

establishes the layout of data on the disk. This step is typically performed by the disk manufacturer.
High-level formatting, on the other hand, creates a file system (e.g., FAT32, NTFS, or ext4) that
organizes files and directories on the disk. It also establishes metadata structures such as file
allocation tables or inodes, which help manage the location of files. Partitioning is another aspect of
disk formatting, where the disk is divided into sections known as partitions. Each partition can have

88

its own file system, allowing for the organization of different types of data or the installation of
multiple operating systems.

Disk Arm Scheduling Algorithms

To optimize disk performance, disk arm scheduling algorithms are used to manage the movement of
the read/write head across the disk's surface. The primary objective of these algorithms is to reduce
seek time, which is the time it takes for the head to move between tracks. Several algorithms are

116

commonly used for this purpose. First-Come, First-Served (FCFS) processes requests in the order
they are received. While simple, this approach can lead to inefficient movement of the head,
resulting in long seek times. Shortest Seek Time First (SSTF) selects the request closest to the current
position of the head, reducing seek time but potentially causing distant requests to be starved. The
SCAN algorithm, also known as the Elevator Algorithm, moves the head in one direction, servicing
requests until the end of the disk is reached, then reverses direction. This method is fairer than SSTF,
but requests at the extremes may experience longer wait times. C-SCAN, or Circular SCAN, is similar
to SCAN but, when the head reaches the end, it returns to the beginning of the disk without
servicing any requests, providing more uniform wait times. LOOK and C-LOOK are variations of SCAN
and C-SCAN, with the head moving only as far as the last request in a given direction, avoiding
unnecessary movement to the physical ends of the disk.

Error Handling

Disks are subject to various types of errors, including mechanical failures and magnetic issues.
Effective error handling is crucial to ensure data integrity and system reliability. Error detection
methods, such as checksums or parity bits, are used to identify corrupted data. If an error is
detected, error correction techniques, like Error Correcting Codes (ECC), can fix minor errors. In
cases where sectors become damaged and unreadable, bad sector management is employed.
Damaged sectors are marked as unusable, and the disk controller remaps data to spare sectors.
Additionally, retry mechanisms are implemented to handle transient errors, allowing the system to
attempt to read or write data again in case of temporary failures.

Track-at-a-Time Caching

Track-at-a-time caching is a technique used to improve disk performance by loading an entire track
of data into memory. When a sector on a track is accessed, the disk controller reads and stores all
the sectors on that track in a cache buffer. This approach significantly reduces latency, especially
during sequential reads, as the subsequent sectors on the track are already available in memory. By
minimizing the movement of the disk head, this method also optimizes disk access patterns, making
it particularly useful for workloads that involve sequential data access.

RAM Disks

A RAM disk, also known as a RAM drive, is a virtual disk created in the computer’s random-access
memory (RAM). Unlike traditional disks, which use mechanical or electronic methods for data
storage, RAM disks operate at the much higher speed of system memory. Since RAM is volatile, data
stored on a RAM disk is lost when the system is powered off or rebooted. RAM disks offer several

key features, the most notable being their speed. RAM is much faster than traditional storage
118

devices like hard disk drives (HDDs) or solid-state drives (SSDs), making RAM disks ideal for tasks that
require rapid data access or processing.

However, RAM disks are limited by the amount of available system RAM. Creating a RAM disk
reduces the memory available for other system processes. Despite this, RAM disks have various use
cases. They are commonly used for temporary file storage, such as caching web data or storing logs
for performance optimization. RAM disks are also utilized in testing and benchmarking scenarios,
where high-speed storage environments are required. Additionally, they help reduce wear on SSDs
by offloading frequent read/write operations, which can extend the lifespan of the SSD.

How a RAM Disk Works

The process of creating a RAM disk begins with software that allocates a portion of the system's
RAM and presents it to the operating system as a disk drive. Once created, the operating system
treats the RAM disk as a regular storage device. Applications can read from and write to the RAM
disk using standard file system operations, just as they would with an HDD or SSD. To manage data
loss, some software solutions periodically save the contents of the RAM disk to a physical disk or
prompt the user to do so before shutdown.

Advantages and Disadvantages of RAM Disks

The primary advantage of RAM disks lies in their exceptional speed. RAM disks offer faster read and
write speeds compared to traditional storage devices and provide low latency, making data access
and processing more efficient. Furthermore, since RAM disks are completely electronic, they have no
moving parts, which eliminates the risk of mechanical failures and ensures silent operation.
However, RAM disks have notable disadvantages. Since RAM is volatile, data stored in a RAM disk is
lost when the power is turned off unless explicitly saved to a non-volatile medium. The capacity of a
RAM disk is limited by the available system memory, and creating a RAM disk reduces the amount of
RAM available for other system processes.

Applications of RAM Disks

RAM disks are particularly useful in scenarios that demand high-speed data processing. They are
77

often employed for high-speed temporary storage, such as caching web browser data, storing
compilation files, or temporarily holding files during video editing or rendering tasks. In the realm of
software testing, RAM disks simulate ultra-fast storage environments, allowing for performance
testing under ideal conditions. They also help to extend the lifespan of SSDs by offloading frequent
writes to the RAM disk, reducing wear on the solid-state storage.

A RAM disk is an excellent tool for situations requiring rapid data access, but its volatility and
memory consumption must be carefully managed to avoid potential data loss and system
performance issues.

9.5 Clocks

Clocks are integral components of computer systems, essential for tracking time and coordinating
system activities. They play crucial roles in tasks such as maintaining the real-time clock, generating
time stamps, scheduling processes, and measuring intervals. In this section, we will explore both
clock hardware and software, detailing how they function together to ensure efficient time
management within a computer system.

Clock Hardware

Clock hardware is the physical aspect of the system responsible for generating time signals and
ensuring that the system maintains accurate timekeeping. Several key components make up the
clock hardware.

The crystal oscillator is the heart of time generation in a system. It produces periodic electronic
signals at a fixed frequency and serves as the foundation for all timekeeping activities in the system.
A common example is the quartz crystal oscillator found in most computer systems, which maintains
consistent timing signals.

Next, the timer circuit converts these high-frequency signals from the oscillator into manageable
time intervals, such as seconds or milliseconds. This conversion allows the operating system to use
these intervals for various functions like process scheduling and other time-based tasks.

Another essential component is the real-time clock (RTC), which is responsible for maintaining
system time even when the computer is powered off. This component is powered by a small battery
that ensures timekeeping continuity. The RTC tracks the current date and time, providing the system
with accurate calendar time information regardless of whether the system is turned on or off.

The clock register stores the current time and makes it available to software when requested. It can
be updated by the operating system or user inputs to adjust the time as needed. Additionally, the
interrupt generator sends periodic interrupts to the CPU to trigger time-based tasks. These
interrupts are crucial for enabling multitasking, ensuring that processes are scheduled, and various
time-sensitive operations are carried out efficiently.

Types of Clocks

There are several types of clocks used in computer systems, each serving a different purpose.

The system clock tracks the passage of time since the system was started. It is primarily used for
process scheduling, profiling system performance, and generating time stamps for various system
events. The real-time clock (RTC) keeps track of real-world time and persists across reboots. It
provides the system with accurate date and time information, ensuring that the computer always
knows the current time, even after a reboot.

Finally, the timer clock generates signals at regular intervals for specific tasks such as process
switching, animation timing, or controlling hardware. This clock is responsible for ensuring that tasks
are executed at the correct times, allowing the system to perform efficiently.

Clock Software

Clock software works in conjunction with the hardware to perform time-related functions within the
operating system and applications. It manages the timekeeping processes, interprets hardware
signals, and coordinates various time-dependent operations in the system.

One of the primary functions of clock software is maintaining system time. It ensures that the
system keeps track of the current date and time and synchronizes with the real-time clock on startup
to ensure accuracy. The software also handles interrupts generated by the timer hardware. These
interrupts are crucial for updating the system time and performing periodic tasks such as process
scheduling and ensuring system responsiveness.

Clock software also plays a key role in process scheduling. It uses the timer to allocate CPU time to
different processes, implementing preemptive multitasking by interrupting running processes at set

intervals. This ensures that no process monopolizes the CPU and that all tasks get a fair share of
processing time.

Another important function is time stamping. Clock software generates time stamps for files, logs,
and transactions, which are used for debugging, system monitoring, and recording historical data.
The software is also responsible for measuring time intervals for performance profiling or
benchmarking. This feature allows the system to track how long certain operations take, enabling
system optimization. Additionally, clock software ensures synchronization with external time sources
like Network Time Protocol (NTP), keeping system clocks accurate, especially in distributed systems.

Clock Software Components

Clock software consists of several key components that work together to manage time effectively.
The timer management component sets timers for periodic tasks, such as refreshing the display or
performing network checks. It provides application programming interfaces (APIs) that allow user
applications to set and handle timers for specific tasks.

The timekeeping module is responsible for maintaining the system clock, adjusting for clock drift,
and using synchronization mechanisms to ensure accuracy. It also converts hardware timer ticks into
human-readable time formats for user display.

The scheduler component relies on timer interrupts to manage process priorities and allocate CPU
time slices. It uses time-based scheduling algorithms, such as Round Robin or Priority Scheduling, to
ensure that processes are executed fairly and efficiently.

Kernel-level handlers respond to clock interrupts, updating internal time counters and performing
critical tasks at the kernel level. User-level tools, like the date utility or the Windows Clock app, allow
users to view and set the system time manually.

Clock Accuracy and Synchronization

Maintaining accurate clock synchronization across a system is essential, but it is not without
challenges. Over time, clocks may experience clock drift, where they lose or gain seconds due to
imperfections in the oscillator. In distributed systems, keeping the time consistent across multiple
nodes is critical for ensuring data integrity and consistency.

To address these challenges, solutions like NTP (Network Time Protocol) are used to synchronize
system clocks with highly accurate time servers over a network. For applications requiring extremely
precise synchronization, the Precision Time Protocol (PTP) is employed. Manual calibration can also
be used periodically to adjust the system clock and account for drift, ensuring continued accuracy.

Applications of Clocks

Clocks have a wide range of applications in computer systems. In real-time systems, such as
embedded systems and Internet of Things (IoT) devices, accurate clocks are required to execute
tasks at precise intervals. In these systems, timing is crucial for ensuring that actions are performed
at the right moment.

Clocks are also integral to process scheduling, where they ensure fair allocation of CPU time to
processes and help maintain system responsiveness. In distributed systems, clock synchronization is
essential for consistency in database transactions, logging events, and coordinating activities across
different nodes.

Finally, clocks are essential in performance monitoring. Profiling tools use clocks to measure the
execution time of processes, helping to identify bottlenecks and optimize system performance.

Through the combination of clock hardware and software, operating systems can manage time
efficiently, ensuring that tasks are executed promptly, systems stay synchronized, and resources are
allocated effectively. This coordination is essential for maintaining smooth system operations across
various tasks and applications.

Terminals: Bridging the User and the Computer System

Terminals are essential devices or interfaces that facilitate communication between users and
computer systems. These devices serve as the primary input/output points for user interaction,
allowing commands to be entered and results to be displayed. While early terminals were hardware-
based, today, many systems emulate terminals through software, providing users with the flexibility
to interact with computers in various ways.

Terminal Hardware

Terminal hardware refers to the physical components that enable user interaction with a computer
system. These components consist of input devices, output devices, communication interfaces, and
terminal controllers.

The input devices typically include the keyboard, which serves as the primary method for entering
commands and data into the system. In graphical terminal setups, a mouse may also be used for
pointer-based interaction. Special keys, such as Ctrl, Alt, and Esc, are often employed for triggering
terminal commands or modifying inputs.

Output devices include displays, such as monitors, which are used to show textual or graphical
outputs from the system. Early terminals relied on cathode ray tube (CRT) monitors, while modern
systems use liquid crystal display (LCD) or light-emitting diode (LED) displays for better efficiency and
clarity. Some terminals also feature printers, such as teletypewriters, to generate hard copies of
outputs.

Communication interfaces are vital for transmitting data between the terminal and the computer.
Early terminals often relied on serial communication protocols like RS-232, while modern terminals
may operate over networks, often using secure shell (SSH) for remote access. Additionally, USB and
PS2 ports are common for connecting input devices to the system.

Terminal controllers are the hardware logic or microcontrollers that manage the input/output
operations and the data flow between the terminal and the host computer. These controllers ensure
that commands are accurately interpreted and that data is transmitted in a timely manner.

There are two primary types of terminal hardware: text-based terminals and graphical terminals.
Text-based terminals, such as the VT100 series or teletypewriters (TTY), display only text and are
typically used in command-line environments. In contrast, graphical terminals support graphical
output and user interface (GUI)-based interactions, providing users with more advanced capabilities,
as seen in X terminals or modern GUI terminal emulators.

Input Software

Input software manages the user’s interaction with input devices, such as keyboards and mice, and
converts this input into a format that the system can process.

One of the key functions of input software is command interpretation. This function captures the
user’s input, such as commands or data, and sends it to the operating system or relevant application
for execution. Examples of such software include shells like bash or zsh, which interpret the
commands typed by users and direct them to the system.

Keyboard handling is another crucial function, as input software detects and processes key presses.
It converts keystrokes into character codes (e.g., ASCII or Unicode), which the system can then use
for various tasks.

Input software also includes line editing functionality, which allows users to edit their input before
submitting it. This feature enables backspacing, cursor movement, and text deletion, making
command-line interfaces more user-friendly.

Input buffering is another vital feature of input software. It buffers user input, ensuring that the
system can process the data efficiently. This allows features like command history recall, enabling
users to press the "up" arrow to retrieve and re-execute previously typed commands.

Modern input software often includes enhancements such as auto-completion, which suggests or
automatically completes commands based on what the user has typed so far. Keyboard shortcuts
are another enhancement, speeding up interactions by allowing users to execute commands using
predefined key combinations.

Output Software

Output software is responsible for handling and displaying the data or information produced by the
system on the terminal.

A primary function of output software is text rendering. This process converts system output into
human-readable text, which is then displayed on the terminal. This could include command results,
error messages, or system prompts.

Control sequences are used by output software to interpret escape sequences, such as those
defined by ANSI, to control text formatting, cursor positioning, or color changes. For example, a
sequence like \033[31m may be used to change text color to red, while \033[0m resets the
formatting back to normal.

Output software also manages the screen buffer, which holds a history of previous outputs that the
user can scroll through. This allows users to review earlier results or errors without having to re-
execute commands. Additionally, output software enables partial screen updates, reducing flicker
and enhancing performance.

In graphical terminals, output software also supports graphical output, rendering visual elements
such as icons or images in addition to textual data. For standard terminals, output software is
responsible for error and status reporting, displaying messages such as system status updates,
progress bars, or error notifications.

Advanced features of output software include color-coded output, which enhances readability by
highlighting errors, warnings, or important keywords. Terminal multiplexing tools, such as tmux or
screen, allow users to run multiple sessions within a single terminal window, improving multitasking.

Furthermore, modern output software supports Unicode, enabling the display of a wide range of
characters, symbols, and even emojis.

Examples of Terminal Software

Various types of terminal software are used to emulate or manage terminal interactions. Text-based
terminals, such as the Linux Console (tty), Windows Command Prompt, and macOS Terminal,
provide users with a basic command-line interface to interact with the system.

Terminal emulators, such as xterm, gnome-terminal, Konsole, or Alacritty, simulate hardware
terminals in a graphical user interface (GUI) environment. These emulators provide users with a
more advanced, user-friendly interface for interacting with the system while maintaining the
functionality of traditional hardware terminals.

Remote terminals, such as SSH clients like PuTTY, OpenSSH, or MobaXterm, enable users to access
and interact with remote systems securely, simulating a local terminal environment over a network
connection.

How It All Works Together

The process of interacting with a terminal involves several stages. First, the input flow begins when
the user types on a keyboard. The input software interprets the keystrokes and passes the resulting
commands to the system. Once the system processes the input, it executes the command and
generates output.

The output flow then takes over, with output software formatting and rendering the system’s
response on the terminal display. This interaction between input and output software, combined
with the hardware components, creates a seamless interface for users to communicate with the
computer system.

By combining both hardware and software components, terminals provide an efficient and effective
interface for user interaction, ranging from simple text-based environments to more sophisticated
graphical user interfaces. Whether used locally or remotely, terminals remain a fundamental tool for
system management and user communication with computer systems.

9.7 Unit Summary

This unit has provided an overview of I/O systems, highlighting the key principles behind I/O
hardware and software. I/O hardware, including disks, clocks, and terminals, forms the foundation
for communication between a computer system and its peripherals. I/O software manages the
interaction with hardware, ensuring efficient data transfer and process scheduling. Understanding
the principles of I/O systems is essential for optimizing performance, ensuring system reliability, and
supporting seamless user interaction with computing devices.

Check Your Progress

1. What are the main functions of an I/O system in a computer?

2. Describe the relationship between I/O hardware and I/O software in a computer system.

3. What are the key components of I/O hardware in a computer system?

4. Explain the principle behind Direct Memory Access (DMA) and how it benefits I/O
operations.

5. What is the role of a device driver in I/O software?

6. List and describe three common I/O scheduling algorithms.

7. What is the primary difference between a disk's low-level and high-level formatting?

8. What are the key components of a hard disk drive (HDD)?
28282828

9. How does track-at-a-time caching improve disk performance?

10. What is the purpose of the real-time clock (RTC) in a computer system?

11. How does the system clock differ from the real-time clock (RTC)?

12. What is an interrupt generator, and how does it relate to the operation of clocks in a
system?

13. Why is time synchronization critical in distributed systems?

14. Explain how Network Time Protocol (NTP) is used to synchronize system clocks.

15. What are the two primary types of terminals, and how do they differ?

16. How does input software handle user commands in a terminal environment?

17. What is the role of output software in a terminal?

18. How does terminal multiplexing improve the functionality of terminals?

19. What is the difference between a graphical terminal and a text-based terminal?

20. How does the use of RAM disks improve system performance, and what are some potential
100

limitations of using a RAM disk?

Unit 10: File Systems

10.1 Introduction

A file system is a critical part of an operating system that organizes and manages data stored on a
33333

storage device such as a hard drive, solid-state drive (SSD), or any other form of non-volatile
memory. It provides a structured method for storing, retrieving, and organizing data, making it
possible for users and applications to efficiently access files.

In simple terms, the file system is like a digital filing cabinet where files (such as documents, images,
videos, and applications) are stored and can be accessed in an organized manner. It manages the
location, organization, and structure of files on storage media, providing an interface between the
raw storage devices and the user or software.

Key Functions of a File System

The file system defines how files are named, stored, and accessed. This organization helps the
operating system (OS) locate files quickly, even on large storage devices. Without an efficient file
system, managing and accessing data would be incredibly slow and difficult.

Every file stored on a computer has associated metadata, which provides information about the file,
110

such as its name, size, location, and permissions. The file system is responsible for managing this
metadata, which enables efficient file retrieval and management.

A file system provides security mechanisms to control access to files. It defines who can access
3838

specific files, what actions they can perform on them (e.g., read, write, or execute), and under what
conditions. Access control mechanisms are essential for protecting sensitive data and ensuring that

119 28282828

only authorized users can interact with certain files.

The file system helps maintain the integrity of data on the storage device. In case of system crashes,
power failures, or other issues, the file system ensures that data can be recovered or remain intact.
Many modern file systems implement journaling or logging, where changes to files are recorded in a
log before they are committed, making recovery easier in case of a failure.

File systems allocate and deallocate storage space efficiently. They ensure that free space is used
optimally and help prevent fragmentation (where files are split into small pieces scattered across the
disk). Space management also involves maintaining information about free blocks and how files are
distributed across the storage device.

File systems allow users to organize files in a hierarchical structure, often represented as a directory
tree. At the top of the tree is the root directory, and beneath it, files and directories are arranged in
a structured way. This structure makes it easy to categorize files and locate them quickly.

Types of Data Stored by File Systems

File systems store many types of data, including text files, which contain human-readable content,
such as documents and configuration files. They also store binary files, which contain data in binary
form, including images, videos, and executable programs. Additionally, file systems maintain
metadata about files such as their names, creation date, last modified date, size, and permissions.
Directories are files themselves that hold references to other files or directories, helping create an
organized structure.

Interaction with Other Components

The file system interacts with several other components of the operating system. The kernel uses
the file system to read and write data, manage storage, and handle file access requests from
applications or users. File systems provide an abstraction of the underlying storage device, allowing
users and software to interact with data in a more organized and user-friendly manner. File system
drivers are software modules that allow the operating system to communicate with different types
of storage devices and file systems. For example, there are specific drivers for handling FAT, NTFS,
ext4, and other file systems.

Why File Systems Are Important

The role of the file system goes beyond simply storing files. It is fundamental for the overall
functionality of a computer system. It enables efficient file storage and retrieval, provides security
features to protect user data, maintains data integrity even in the face of system failures, and
ensures that multiple users and applications can share and access data on a system simultaneously.

Without a well-structured file system, a computer’s storage would be disorganized, inefficient, and
prone to data loss.

10.2 Directories and File System Layout

In a file system, directories are an essential component that organizes files in a hierarchical
structure, enabling efficient storage, retrieval, and management of data. Directories function as
containers for files and other directories (subdirectories), creating a tree-like structure known as the
directory tree or file system hierarchy. The layout of the file system, including the arrangement of

6363

directories and files, plays a vital role in the efficiency, speed, and usability of data access.

Directories in the File System
88

A directory can be understood as a special file that holds information about other files and
directories. Directories allow users and applications to organize files systematically. Each directory
typically stores the following types of information:

1. File Names: The names of the files or subdirectories contained within it.

2. Metadata: Details about the files or subdirectories, such as permissions, ownership, and
timestamps (e.g., creation, last access, modification).

3. Pointers to Files: References (or pointers) that help the operating system locate the actual
data of the file stored on disk.

Directories are crucial for organizing data, and without them, all files would be stored in a flat
structure, making it difficult to locate and manage data effectively.

Directory Structure

The directory structure refers to how files and directories are organized within the file system. It
determines how users and the operating system can efficiently navigate through the file system to
locate specific files.

1. Root Directory: At the top of the directory structure is the root directory. In a hierarchical
file system, the root directory is the starting point from which all other files and directories
are accessed. It is typically denoted by a single slash (/) in Unix-based systems or a drive
letter (such as C:\) in Windows-based systems.

2. Subdirectories: Below the root directory, the file system can have multiple subdirectories (or
child directories). Each subdirectory can contain its own files and other subdirectories,
creating a tree-like structure. This hierarchy allows files to be organized logically, such as by
type, project, or user.

3. Path Names: To access a specific file or directory, a path is used. A path is the address of a
file or directory in the file system and can be absolute or relative:

➢ Absolute Path: Specifies the complete location starting from the root directory. For
example, /home/user/documents/file.txt in Unix or
C:\Users\User\Documents\file.txt in Windows.

➢ Relative Path: Specifies the location of a file or directory relative to the current
working directory. For example, documents/file.txt from the user directory.

File System Layout

The file system layout refers to how data is organized on the storage medium. It includes the
structure of directories, files, and the allocation of disk blocks for storing the data. The layout
directly impacts how efficiently the file system can store and retrieve files, and it plays a significant

6868

role in system performance.

1. File Allocation: File systems divide the disk into blocks (fixed-size units of data storage). The
system needs to determine how files are stored in these blocks. There are different
strategies for file allocation:

➢

➢

➢

Contiguous Allocation: Files are stored in consecutive blocks on the disk. This
method is simple and allows for fast access, but it can lead to fragmentation over
time as files grow and shrink.

Linked Allocation: Each file is stored in non-contiguous blocks, and each block
88

contains a pointer to the next block. This method avoids fragmentation but can
cause slower access since the system has to follow pointers.

Indexed Allocation: An index block is used to store the addresses of all blocks used
by a file. This method combines the benefits of both contiguous and linked
allocation but may require more overhead to manage the index blocks.

2. Block Size: The size of the disk blocks plays an important role in file system performance.
Small block sizes may reduce wasted space but can lead to higher overhead when managing
many small files. Larger block sizes can improve performance for large files but lead to
wasted space if many small files are stored.

3. File System Metadata: File systems use special structures to track the state of files and
directories. These metadata structures include:

➢

➢

File Allocation Table (FAT): A table that keeps track of the allocation of blocks for
each file. It is commonly used in FAT file systems.

Inodes: A data structure that stores file metadata, including the file's attributes
(permissions, owner, timestamps) and the addresses of data blocks. File systems like
ext4 use inodes to manage files.

➢ Superblock: The superblock contains essential information about the file system,
33333

such as the file system type, block size, free space, and root directory location.
104

4. Free Space Management: As files are created and deleted, space on the disk becomes
available for reuse. Efficient free space management is essential to minimize fragmentation
and ensure that storage is used optimally. Free space can be managed using:

Bitmaps: A bitmap is used to track which blocks are free and which are allocated.
Each bit represents a block on the disk.

Free Block Lists: A list of free blocks that can be allocated to new files.
33333

5. File System Integrity and Journaling: Modern file systems often use journaling or logging to
ensure the integrity of data. When a file operation (such as writing data) is performed, it is
first recorded in a journal. If a crash occurs before the operation is completed, the system
can use the journal to restore the file system to a consistent state.

6. Virtual File System (VFS): A virtual file system acts as an abstraction layer between the user
6363

and the actual file system. It allows the operating system to support different types of file
36

systems (such as FAT, NTFS, ext4, etc.) without requiring applications to know the details of
the underlying file system. The VFS provides a unified interface for interacting with files
across different storage devices.

Directory Access and Navigation

When interacting with directories, users and programs must navigate through the file system,
searching for files and directories. Most file systems provide efficient mechanisms to locate files
within directories:

1. Directory Indexing: Many file systems use indexing techniques to speed up directory access.
Instead of searching through each entry sequentially, the system uses a sorted index or hash
table to quickly locate a file or directory by its name.

2. File Permissions: File and directory access is often controlled by permissions, which
determine who can read, write, or execute a file. These permissions are typically set at the
file or directory level and apply to users and groups. For example, in Unix-based systems,
permissions can be set for the owner, group, and others.

Hierarchical File System Advantages

The hierarchical structure of directories offers several advantages:

➢

➢

➢

➢

Organization: Files can be organized in a logical manner, making it easier to find and manage
28282828

them.

Access Control: Different directories can have different access levels, allowing for better
control over file security.

Scalability: The hierarchical structure can scale to accommodate large numbers of files
without becoming disorganized.

Efficiency: The system can efficiently manage large volumes of data through indexing,
6868

caching, and free space management.

10.3 Types of File Systems

File systems are integral components of operating systems, responsible for organizing and managing
data stored on storage devices like hard drives, SSDs, and optical discs. Different types of file
systems exist, each designed for specific use cases, hardware, and operating system environments.
In this section, we will explore the main types of file systems, their characteristics, and their
applications.

FAT (File Allocation Table)

The FAT file system is one of the oldest and most widely used file systems. It was originally
developed by Microsoft for use with floppy disks and later adapted for hard drives and other storage
devices. Despite its simplicity, it remains popular in various consumer electronics, such as memory
cards, flash drives, and external hard drives. FAT is simple to implement and manage, which makes it
suitable for low-end devices with limited resources. It is supported by almost all operating systems,

8080

including Windows, macOS, and Linux, making it an ideal choice for removable storage media. There
are several versions of the FAT file system, including FAT12, FAT16, and FAT32. Each variant supports
different file and volume size limits. FAT12 was used primarily for floppy disks, with a maximum
volume size of 32MB. FAT16 supports volumes up to 2GB and was commonly used for older systems.
FAT32 supports larger volumes (up to 2TB) and larger files (up to 4GB).

Despite its widespread compatibility, FAT has some limitations. It lacks advanced file permissions or
encryption, making it unsuitable for systems requiring robust security. Additionally, FAT file systems
tend to experience fragmentation over time, which can slow down file access and performance. FAT
is commonly used in flash drives, memory cards, external hard drives, and other portable storage
devices, as well as devices that require broad compatibility and simplicity, such as digital cameras,
printers, and gaming consoles.

NTFS (New Technology File System)

The NTFS file system is the default file system used by modern versions of the Windows operating
33333

system. It was introduced with Windows NT and is designed to overcome the limitations of older file
systems like FAT, offering better performance, security, and reliability. NTFS uses a journaling system
to keep track of changes to files and directories. This helps protect data integrity in the event of a
power failure or system crash. NTFS supports detailed file-level permissions, allowing administrators
to control access to files and folders based on user roles. NTFS also supports file compression,

allowing files and directories to be compressed to save disk space, and file encryption through the
Encrypting File System (EFS), offering enhanced security for sensitive data.

NTFS can handle volumes up to 256TB and individual file sizes up to 16 exabytes, making it suitable
for large-scale systems. It stores detailed metadata for each file, including file creation and
modification timestamps, security descriptors, and file attributes. However, NTFS is primarily
designed for Windows, which limits its native support on other operating systems like macOS and
Linux. Despite this, third-party tools are available to provide read/write access to NTFS volumes on
non-Windows systems. NTFS is commonly used in desktop and laptop computers running Windows,
servers, and workstations where security, reliability, and performance are critical, as well as
environments requiring large file and volume support.

ext (Extended File System)

The ext family of file systems is commonly used in Linux-based operating systems. The first version,
ext1, was introduced in 1992, and it has since evolved into the more advanced ext2, ext3, and ext4
file systems. Each version of ext offers improvements in performance, reliability, and features. ext2
was widely used in Linux environments but lacks journaling, making it less fault-tolerant than NTFS.
ext3 introduced journaling, which provides greater data reliability and faster recovery in case of
system crashes. ext3 is backward-compatible with ext2, meaning it can be mounted and accessed by
systems that use ext2.

ext4, the fourth version of ext, offers significant performance improvements over its predecessors,
including faster file system checks and support for larger files and volumes. ext4 uses journaling to
protect data integrity and provide fast recovery, and it utilizes extents (contiguous blocks) to allocate
space for files, improving performance and reducing fragmentation. ext4 supports volumes up to 1
exabyte and individual files up to 16 terabytes. Although ext4 reduces fragmentation compared to
ext2, it can still suffer from fragmentation in certain scenarios, particularly with small files. ext file
systems are widely supported on Linux but are not natively supported by Windows or macOS,
although third-party tools can enable read/write access. ext4 is commonly used in servers,
workstations, and desktops running Linux, as well as environments requiring strong reliability, fast
performance, and scalability.

HFS+ (Hierarchical File System Plus)

HFS+, also known as Mac OS Extended, is the file system used by macOS prior to the introduction of
APFS. HFS+ was designed to replace the older HFS file system and provides enhanced performance,
better support for larger volumes, and improved file system reliability. HFS+ supports features such
as journaling, which provides increased data integrity by keeping track of changes to the file system.
This helps protect against data corruption in the event of power outages or system crashes. HFS+
also supports hard links, which allow multiple file names to refer to the same file, and extended
attributes, which allow additional metadata to be stored with files.

HFS+ has become synonymous with macOS systems, but it also has some limitations. For instance,
while it works well with macOS, it is not natively supported on Windows and Linux. As macOS
evolved, Apple introduced APFS (Apple File System) as its new default file system, replacing HFS+
due to its enhanced support for solid-state drives (SSDs) and improved encryption features. HFS+
was primarily used for macOS desktops and laptops before the transition to APFS, and it remains
relevant in older macOS systems and some external storage devices.

APFS (Apple File System)

APFS is a modern file system developed by Apple, optimized for flash and solid-state drives.
Introduced in macOS High Sierra, APFS is designed to address the increasing demands of mobile and
desktop systems. APFS supports improved encryption, high-performance capabilities, and more
efficient storage management compared to HFS+. One of the key features of APFS is its native
support for space sharing, which allows multiple volumes to share the same physical storage space,
making storage management more flexible. APFS also supports snapshots, which are read-only
copies of the file system at a given point in time, providing a mechanism for backup and recovery.

Unlike HFS+, which was tailored for traditional spinning hard drives, APFS is optimized for the low-
latency, high-speed characteristics of solid-state drives (SSDs). It also offers better handling of file
system corruption, faster file copy operations, and improved file system integrity. APFS is the default
file system for all Apple devices that use macOS, iOS, watchOS, and tvOS, and it provides advanced
features such as full disk encryption, better handling of large file systems, and improved space
management.

Each file system has its strengths, weaknesses, and specific use cases. The choice of file system
depends on factors such as the operating system being used, the hardware available, the size and
types of data to be managed, and the performance requirements. Understanding the differences
between file systems such as FAT, NTFS, ext, HFS+, and APFS helps in choosing the best solution for
various storage and data management needs across different platforms and devices.

10.4 Unit Summary

A file system is an essential part of an operating system that manages data stored on storage devices
like hard drives and SSDs. It organizes, stores, and retrieves data, allowing users and applications to
efficiently access files. Key functions of file systems include managing file naming, storage,
metadata, security, data integrity, space allocation, and providing a hierarchical directory structure
for organizing files. File systems interact with other components of the operating system and ensure
that data is stored in a way that is easy to access and secure.

Different types of file systems include FAT (used for portable storage devices), NTFS (default for
Windows, known for security and reliability), ext (used in Linux, with versions offering various
improvements), HFS+ (used in older macOS systems), and APFS (Apple's modern file system
optimized for SSDs). Each file system has its own strengths and applications depending on the
operating system and hardware environment.

Check Your Progress

1. What is a file system and what is its role in an operating system?

2. Why is a file system compared to a digital filing cabinet?

3. What are the key functions of a file system?
28282828

4. How does a file system manage metadata associated with files?
33333

5. What security mechanisms are provided by file systems to control access to files?

6. How does a file system maintain data integrity during system failures?

7. What is file fragmentation, and how does the file system prevent it?

8. How are files organized in a hierarchical structure within a file system?

9. What is the difference between an absolute path and a relative path in a file system?

10. What are the three main file allocation strategies used by file systems?

11. What is the role of a "superblock" in file systems?

12. How do file systems manage free space on a storage device?

13. What is the purpose of journaling in file systems?

14. What is a Virtual File System (VFS) and how does it interact with different file systems?

15. Describe the structure of directories within a file system.

16. What is the function of the root directory in a hierarchical file system?

17. How does the FAT file system differ from other file systems like NTFS and ext4?

18. What are the main features of the NTFS file system, and what are its benefits?

19. What is the significance of ext4 in Linux systems?

20. What are the advantages and limitations of the APFS file system used by Apple devices?

Unit 11: Security and Protection Mechanisms

11.1 Introduction

Security and protection are crucial aspects of any operating system (OS), ensuring that data and
resources are properly safeguarded against unauthorized access, misuse, or malicious attacks. These
mechanisms help maintain the confidentiality, integrity, and availability of the system and its

3838

resources, while also ensuring that users and programs can operate within the boundaries set by
system administrators.

Security

Security in the context of an operating system refers to the set of measures that ensure the
protection of the system from external and internal threats. This includes preventing unauthorized
access to resources, ensuring confidentiality, protecting data from corruption or tampering, and
safeguarding the OS from malicious software such as viruses or malware.

Key areas of security in operating systems include:

1. Authentication: Verifying the identity of users, devices, or processes. This typically involves
passwords, biometric data, or multi-factor authentication.

2. Access Control: Determining who can access which resources and what actions they can
perform. It often uses concepts such as access control lists (ACLs), role-based access control
(RBAC), or mandatory access control (MAC).

3. Data Encryption: Protecting sensitive information by encoding it in such a way that only
8080

authorized parties can read or modify it.

4. Network Security: Protecting data and communications as they travel across the network,
using techniques such as firewalls, encryption, and intrusion detection systems (IDS).

5. Malware Protection: Identifying, preventing, and removing malicious software that attempts
to harm the system or steal data.

6. Intrusion Detection and Prevention: Monitoring system activities for signs of suspicious
behaviour or unauthorized access and responding to it in real-time.

Protection

Protection focuses on ensuring that a program or user cannot interfere with or damage the
resources of other programs or users. It involves setting up boundaries and policies that govern

resource access and ensuring that users or programs cannot perform actions outside their
5050

designated privileges.

Key aspects of protection in operating systems include:

1. User Isolation: Ensuring that processes or users do not have access to the data and resources
of others without proper authorization. This is done through mechanisms like process
isolation, virtual memory, and user-specific file permissions.

2. Resource Allocation: Determining how system resources (such as CPU time, memory, and
I/O devices) are allocated to different processes while ensuring that no process can
monopolize or interfere with others’ resources.

3. Access Control Mechanisms: This involves defining the policies on who can access what
resources and under what conditions. Some examples include:

➢ Discretionary Access Control (DAC): Allows owners to set access controls on their
resources.

➢ Mandatory Access Control (MAC): Access to resources is based on security labels,
7777

and users or programs cannot change access controls.

4. Audit and Logging: Maintaining logs of access and modifications to system resources so that
administrators can detect any inappropriate behaviour or breaches in the system.

Importance of Security and Protection in OS

Operating systems are the core software that enables a computer to function. As such, they often
serve as a target for malicious activities. Without proper security and protection, an OS can be
vulnerable to a wide range of attacks, such as data theft, privilege escalation, denial of service (DoS),

5050

or malware infections. Furthermore, in multi-user environments, security and protection
mechanisms are necessary to ensure that users and processes do not interfere with each other’s
operations or access unauthorized data.

Operating systems implement these mechanisms to ensure that:

➢

➢

➢

➢

Users and processes are correctly identified and their actions are authenticated.

Data is protected from unauthorized access or modification.

Resource usage is managed so that processes cannot interfere with each other.

System stability and integrity are maintained even in the face of external or internal attacks.

11.2 Security Environment and Attacks

The security environment within an operating system (OS) refers to the overall context in which
security policies, measures, and mechanisms are implemented to protect resources, data, and
communications from threats. The security environment encompasses both the threats that the
system faces and the tools or strategies used to prevent, detect, or mitigate those threats.

Understanding the security environment involves recognizing the different types of security risks,
understanding the potential attacks that can exploit vulnerabilities, and knowing how to defend
against them.

Types of Security Threats and Attacks

Security threats can originate from various sources, including unauthorized users (hackers), insiders,
8181

malicious software, or external environmental factors. Understanding the nature of these threats
and attacks helps in creating robust security mechanisms to protect systems.

1. Unauthorized Access: The most common and serious security threat. Unauthorized access
occurs when an attacker gains access to a system or its resources without the appropriate
authorization or credentials. This can lead to data theft, data corruption, or the installation
of malicious software.

2. Malware Attacks: Malware is malicious software designed to harm or exploit a system, and it
is a major threat to any OS. There are various types of malware attacks:

➢

➢

➢

➢

Viruses: Malicious programs that attach themselves to legitimate programs or files
3939

and spread when the infected files are shared or executed.

Worms: Similar to viruses but do not require user interaction to propagate. They can
spread across networks without needing to attach to files.

Trojan Horses: Malicious programs disguised as legitimate software. They often trick
users into installing them, leading to potential system compromise.

Ransomware: Malware that encrypts files or locks access to data, then demands a
ransom from the victim in exchange for restoring access.

3. Privilege Escalation: This occurs when an attacker gains elevated permissions beyond what
was originally granted. There are two types of privilege escalation:

8181

➢ Vertical Privilege Escalation: When a lower-level user or process gains higher-level
privileges, such as administrator or root access.

➢ Horizontal Privilege Escalation: When a user or process gains access to resources or
data of other users with the same level of privilege.

4. Denial of Service (DoS) and Distributed Denial of Service (DDoS): These attacks are designed
232323

to disrupt or make a system or network unavailable by overwhelming it with a flood of
requests or data. A DoS attack originates from a single source, while a DDoS attack involves
multiple systems working together to launch the attack.

5. Man-in-the-Middle (MitM) Attacks: In a MitM attack, an attacker secretly intercepts and
relays communication between two parties, potentially altering or eavesdropping on the
communication without the parties' knowledge. MitM attacks are a significant threat to
communication security, especially in unencrypted networks.

6. Phishing and Social Engineering: Phishing attacks use fraudulent emails, websites, or
communications that appear legitimate to deceive users into revealing sensitive information,
such as passwords or credit card details. Social engineering is the broader concept where
attackers manipulate individuals into disclosing confidential information or performing
actions that compromise system security.

7. Buffer Overflow Attacks: These occur when an attacker sends more data to a program or
process than it can handle, causing it to overwrite memory locations. This can lead to the
execution of arbitrary code, typically giving the attacker control over the system.

8. SQL Injection: A type of attack that targets databases through vulnerabilities in web
565656 26262626

applications. Attackers inject malicious SQL code into input fields, allowing them to access or
manipulate the database.

9. Keylogging and Data Theft: Keyloggers are malicious programs that record every keystroke
made on a system, enabling attackers to gather sensitive information such as usernames,

4545

passwords, and credit card details.

10. Eavesdropping: This involves intercepting and monitoring private communications or data
transmissions without the consent of the parties involved. Attackers can use eavesdropping
to obtain sensitive information, such as passwords or financial details, as it is transmitted
over networks.

Security Measures to Defend Against Attacks

To defend against the aforementioned attacks and threats, various security measures and
technologies are employed. These defences work at different levels and employ a combination of
preventive, detective, and corrective actions.

1. Firewalls: Firewalls act as barriers between trusted internal networks and potentially
101

harmful external networks. They filter traffic based on predefined security rules to block
malicious traffic and prevent unauthorized access to network resources.

2. Encryption: Encryption converts data into unreadable code to protect its confidentiality.
Even if an attacker intercept encrypted data, they cannot read it without the decryption key.
Encryption is particularly important for protecting sensitive data in transit (e.g., during
communication over the Internet) and at rest (e.g., in databases or on storage devices).

3. Intrusion Detection Systems (IDS) and Intrusion Prevention Systems (IPS): IDS monitors the
system for signs of suspicious activity or known attack patterns and alerts administrators if
any such activity is detected. IPS not only detects attacks but can also prevent them by

565656

automatically blocking malicious traffic.

4. Access Control: Ensuring that only authorized users or processes can access certain
202020

resources. This includes:

➢

➢

➢

Authentication (verifying user identities).

Authorization (determining what actions users can perform).

Audit and logging (tracking user actions for accountability and analysis).

5. Sandboxing: Sandboxing involves running untrusted applications in isolated environments
(called sandboxes) to prevent them from affecting the rest of the system. This containment
prevents potential harm caused by malware or untrusted code.

6. Regular Updates and Patch Management: Many attacks exploit vulnerabilities in software.
Regularly updating and patching the OS, applications, and security software helps ensure

26262626

that known vulnerabilities are addressed before they can be exploited.

7. Antivirus and Anti-malware Software: These programs scan the system for malicious
software and either block or remove it. They are regularly updated to detect and protect
against new threats.

8. User Education and Awareness: Often, security breaches happen because users unknowingly
make mistakes (such as clicking on phishing emails). Educating users on security best
practices is a key defense mechanism.

9. Backup and Disaster Recovery: Having reliable backup and disaster recovery plans in place
ensures that in the event of an attack, such as a ransomware incident, data can be restored

7777

to a previous, unaffected state.

11.3 Design Principles for Security

The six design principles for security identified by Saltzer and Schroeder in 1975 serve as
foundational guidelines for creating robust and secure systems. Here’s a breakdown of these
principles:

1. The System Design Should Be Public: Security should not rely on obscurity. Transparency in
the design allows for thorough scrutiny and strengthens security by exposing potential flaws
to experts. Assuming secrecy of the system's operation leads to overconfidence and
potential vulnerabilities.

2. Default to No Access: Access controls should deny permissions by default, requiring explicit
granting of access. This approach minimizes risks since errors that deny legitimate access are

232323

more likely to be noticed and corrected than errors that allow unauthorized access.

3. Check for Current Authority: Permissions should be validated dynamically rather than relying
on outdated checks. For example, a system should continually verify access rights during a
session rather than only at the start, ensuring that changes in permissions are respected
immediately.

4. Least Privilege Principle: Processes and users should be granted only the minimum privileges
26262626

necessary to perform their tasks. This minimizes potential damage from compromised
processes, including those with embedded malicious code (e.g., Trojan horses).

5. Simplicity and Integration: Security mechanisms should be straightforward, uniform, and
integrated into the system's foundational layers. Retroactively adding security to an insecure
system is highly challenging and often ineffective. Security should be an intrinsic aspect of
system design.

6. Psychological Acceptability: Security measures must be user-friendly to encourage
compliance. Complex or inconvenient systems lead users to bypass them, undermining
security. Systems should balance robust protection with ease of use to foster adoption and
trust.

These principles underscore the importance of proactive, thoughtful design in ensuring system
security. They remain relevant and widely applied in modern computing environments.

6565

11.4 Protection Mechanisms

Protection mechanisms in operating systems are essential for securing system resources, including
memory, files, and devices, ensuring that they are accessed and utilized only by authorized users and
processes. These mechanisms are designed to enforce security policies, prevent unauthorized

202020

access, and maintain the integrity of the system. Below is a detailed explanation of some of the key
protection mechanisms.

Protection Domains

A protection domain refers to the specific set of resources that a process or user is permitted to
access, as well as the operations that are allowed on these resources. These resources can include
memory, files, devices, or other system elements, while the operations might involve actions like
reading, writing, or executing data. The concept of protection domains is fundamental in managing
access control within an operating system.

One key aspect of protection domains is domain switching, which occurs when a process changes its
execution context, potentially inheriting new access rights. This allows processes to adapt their
access control as they execute, depending on the environment in which they operate. Protection

7777

domains can be defined at various levels of granularity, such as the process level, user level, or even
down to the level of specific threads or modules within the system.

To implement protection domains, operating systems typically use access control matrices. These
matrices use rows to represent subjects (such as users or processes) and columns to represent
objects (such as files or devices). Each cell in the matrix specifies the permissions that a particular
subject has for a particular object. For example, a process running as a standard user may have

4545

limited access to system resources, while a process running as an administrator may be granted full
access to all resources.

Access Control Lists (ACLs)

Access Control Lists (ACLs) are used to specify which users or system processes are allowed to access
specific resources, and which operations they are permitted to perform. An ACL is essentially a list
associated with each resource, where each entry in the list designates a subject (user or group) and
the corresponding access permissions (such as read, write, or execute).

ACLs offer fine-grained control over resource access, allowing different users or groups to have
varying levels of permissions on the same resource. They are also highly flexible and can be updated
dynamically to reflect changing security needs, such as when a user's role or access requirements
change.

For example, a file may have an ACL specifying that one user, Alice, can both read and write the file,
while another user, Bob, can only read the file. In this case, the ACL ensures that Alice has full access
while Bob is restricted to a more limited set of operations, and other users may be denied access
entirely.

Capabilities

Capabilities are special tokens or keys that provide processes or users with specific access rights to
7777

particular resources. Unlike ACLs, where access control information is stored centrally, capabilities
are decentralized and distributed directly to the subjects (users or processes). These tokens allow
users or processes to access certain resources without the need for additional checks or validation at
the time of access.

Each process or user maintains a capability list, which outlines the resources they are authorized to
access and the operations they can perform on those resources. This system reduces the complexity
of centralized access control mechanisms and provides a more direct form of authorization.

Capabilities can be implemented using either hardware-based mechanisms, such as special registers,
or software-based systems, like cryptographic tokens. For example, a process holding a capability for
a specific file can access it without needing to go through further permission checks, as long as it
presents the correct token.

Multilevel Security (MLS)

Multilevel Security (MLS) is a protection mechanism designed to enforce access policies based on
multiple security levels and classifications. It is especially important in systems that handle sensitive
information, such as government and military applications. Under MLS, resources and users are
assigned different security levels, such as "Confidential," "Secret," or "Top Secret," and access
decisions are made based on the comparison between the user's clearance level and the resource's
classification level.

One of the key principles of MLS is the No Read Up rule, which states that a subject with a lower
security level cannot read data classified at a higher level. This prevents unauthorized access to
sensitive information. Similarly, the No Write Down policy, also known as the Star Property, prevents
a subject at a higher security level from writing data to a lower level, thus avoiding potential data
leakage.

For example, a user with a "Secret" clearance would be allowed to read documents classified as
"Secret" and "Confidential," but they would be restricted from accessing documents classified as
"Top Secret." This ensures that users only access information for which they have been authorized
based on their security clearance.

Covert Channels

Covert channels are unintended communication pathways that can be exploited to transfer
information between processes, often in violation of established security policies. These channels
can be used to bypass access controls, leading to potential security breaches. There are two primary
types of covert channels: storage channels and timing channels.

Storage channels use shared system resources, such as files or memory, to transmit information
covertly. For instance, one process may modify a shared file in a way that another process can
detect, thereby communicating sensitive data. Timing channels, on the other hand, involve
exploiting variations in the timing of resource usage to encode information. For example, an attacker

26262626

may subtly alter the timing of system operations to convey hidden messages to another process.

The challenge with covert channels is that they are often difficult to detect, as they exploit legitimate
system features or behaviours. Mitigating covert channels typically requires minimizing shared
resources and implementing strict resource usage policies. By reducing the possibility of information
leakage through these unintended channels, operating systems can improve their overall security
posture.

In conclusion, protection mechanisms in operating systems are fundamental to maintaining the
202020

security and integrity of system resources. These mechanisms, including protection domains, access
control lists, capabilities, multilevel security, and addressing covert channels, form the backbone of a
secure operating system environment. Each mechanism plays a vital role in ensuring that
unauthorized users and processes cannot compromise system integrity, making them essential for
any secure computing environment.

11.5 Unit Summary

This section summarizes the key concepts discussed in the unit, reinforcing the importance of
security and protection mechanisms in the design and maintenance of secure systems. It emphasizes
the need for a multi-layered approach to security, the significance of proactive measures such as
encryption and authentication, and the role of proper system design in safeguarding against attacks.

Check Your Progress

1. What is the primary goal of security and protection mechanisms in an operating system?

2. List the key areas of security in operating systems.

3. Define "authentication" and explain its importance in security.

4. How does "access control" work in an operating system?

5. What is the role of "data encryption" in protecting sensitive information?

6. Describe the function of "network security" in an operating system.

7. What is the significance of "malware protection" for an operating system?

8. Explain the purpose of "intrusion detection and prevention systems" (IDPS).

9. What are some common sources of security threats to an operating system?

10. How do "malware attacks" such as viruses, worms, and Trojan horses affect operating
systems?

11. What is "privilege escalation," and how can it be classified?

12. Explain the difference between a Denial of Service (DoS) attack and a Distributed Denial of
232323

Service (DDoS) attack.

13. What is a "man-in-the-middle" (MitM) attack, and why is it a concern for communication
security?

14. Describe "phishing" and "social engineering" attacks and how they compromise security.

15. How do "buffer overflow attacks" work, and what security risks do they pose?

16. What is SQL injection, and how does it target database vulnerabilities?

17. What does the design principle "Default to No Access" mean, and why is it important in
system security?

18. Explain the principle of "Least Privilege" and its role in minimizing potential damage from
security breaches.

19. How does the principle of "Psychological Acceptability" balance security measures and user
experience?

20. What is a "protection domain," and how does it help manage access control in an operating
system?

Unit 12: Overview of Unix

This unit provides an in-depth overview of the Unix operating system, exploring its features,
historical development, and its continued relevance in modern computing.

12.1 Introduction to Unix

Unix is a powerful, multiuser, multitasking operating system that has been a cornerstone in the
6565

world of computing since its creation in the late 1960s. It is known for its flexibility, scalability, and
robustness, and is widely used in many environments, particularly for server management, system
administration, and software development. Key features of Unix include:

➢ Multitasking and Multithreading: Unix allows multiple tasks (processes) to run
simultaneously. These processes can be independent or work together. The ability to
execute multiple tasks concurrently is one of Unix's core strengths, enabling it to perform
well even under heavy workloads. Multithreading further allows different parts of a single
program to run concurrently, improving performance and efficiency.

➢ Security and Permissions: Unix has a built-in security model that uses user IDs (UID) and
group IDs (GID) to manage access control. Each file and process is associated with a specific
owner, and permissions are granted to the owner, group, and other users. This model allows
administrators to define who can read, write, or execute files, providing a robust system for
preventing unauthorized access. The use of file ownership and permissions plays a critical
role in maintaining system security.

➢

➢

Portability: One of Unix’s most important features is its portability. Originally written in
assembly language, Unix was later rewritten in the C programming language, which allowed
it to be easily ported to various hardware platforms. This portability made Unix an attractive
option for academic institutions, research labs, and businesses, as it could run on a variety of
computers with little modification.

Command-Line Interface (CLI): Although modern Unix-based operating systems like macOS
offer graphical user interfaces (GUIs), Unix is traditionally controlled via a command-line
interface. The CLI allows advanced users to interact directly with the system, providing
powerful control over system processes and file management. Unix provides a vast set of
commands for performing a variety of tasks, from file manipulation to networking, system
monitoring, and user management.

➢ File System Hierarchy: The Unix file system is organized in a hierarchical structure, which is
key to its flexibility and efficiency. At the top of the hierarchy is the root directory (/), and

565656

below that, files and directories are organized into subdirectories. Unix’s file system
supports a wide range of file types, such as regular files, directories, symbolic links, and
device files. This structure makes it easy for administrators and users to navigate the system
and manage data.

➢

➢

Networking Capabilities: Unix has robust networking capabilities, allowing it to connect to
other systems, manage network resources, and share information over a network. Tools like
telnet, ssh, ftp, and scp allow Unix to communicate securely over the internet or local
networks.

Shell Programming and Scripting: One of Unix’s unique features is its shell, a command-line
interface used to execute commands. The shell also supports scripting, allowing users to
automate tasks and write programs that can execute complex sequences of commands.
Shell scripts are used for system administration tasks, software development, and
automation, increasing productivity and efficiency.

12.2 History and Evolution of Unix

The evolution of Unix is deeply intertwined with the history of computing itself. The operating
system's development spans several decades, with major milestones marking its growth and
influence.

➢ 1969 – Creation of Unix: The initial version of Unix was developed at AT&T Bell Labs by Ken
Thompson, Dennis Ritchie, and others. Unix's primary goal was to create a simpler, more
efficient operating system that could manage resources effectively on large computers. It
was initially a response to the limitations of Multics, an ambitious but complex project at
Bell Labs.

➢

➢

1971 – First Version of Unix: The first version of Unix, which was rudimentary, was written in
assembly language. It provided basic features like multitasking and a simple file system. This
version laid the foundation for future Unix developments.

1973 – Rewriting Unix in C: A major milestone in Unix's development came when Dennis
Ritchie and Brian Kernighan rewrote the entire operating system in the C programming
language. This allowed Unix to become portable across different hardware platforms,
making it easier to adapt to new systems. This was a turning point, as it made Unix one of
the first portable operating systems.

➢

➢

1979 – Unix Version 7: Version 7 was one of the most important releases of Unix, as it
3939

incorporated significant improvements and features. It gained popularity in both academic
and commercial environments, becoming the most widely used version at the time. Unix
Version 7 is often credited with cementing Unix's role as an influential operating system.

1980s – Commercialization and Growth: During the 1980s, Unix grew significantly in
popularity and began to see commercial success. Different vendors began developing their
own versions of Unix. AT&T's System V and the Berkeley Software Distribution (BSD) from
the University of California became the two major branches of Unix during this period. Both
of these versions introduced important new features and innovations, such as networking
support and better file system structures.

➢ 1983 – The GNU Project: Richard Stallman launched the GNU (GNU's Not Unix) Project in
1983, with the aim of developing a free and open-source Unix-like operating system. The

project’s software, including tools like the GNU Compiler Collection (GCC), would later be
integral to the development of the Linux operating system. The Free Software Foundation
(FSF) was founded to promote and distribute free software.

➢

➢

➢

1990s – The Rise of Linux: In 1991, Linus Torvalds released the first version of Linux, a Unix-
like operating system kernel. Linux was based on Unix principles and incorporated
components from the GNU project. Linux grew quickly in popularity, and its open-source
nature made it an attractive choice for developers and businesses.

1999 – The UNIX 03 Standard: Unix’s development continued through the 1990s and 2000s,
with multiple versions and distributions evolving. In 1999, The Open Group, which oversees
the Unix standard, established UNIX 03, which provided formal specifications for operating
systems to be recognized as true Unix systems.

Present Day – Unix Derivatives: Today, Unix lives on in many modern operating systems.
Linux is one of the most well-known Unix-like systems, while macOS (Apple’s operating
system) is a Unix-based OS. Other variants, such as FreeBSD, OpenBSD, and Solaris, continue
to be used in specialized environments. Unix’s open standards and the portability of its tools
and utilities have influenced many other operating systems, including the Windows
Subsystem for Linux (WSL) on Microsoft Windows.

12.3 Unit Summary

This unit explored the history and key features of Unix, a pivotal operating system that has
influenced the design of many modern systems. We covered the core aspects of Unix, including its
multitasking, security features, portability, and powerful command-line interface. We also examined
its historical development, from its initial creation in the 1960s to its commercialization and
evolution into modern Unix-like systems such as Linux and macOS.

Unix's continued relevance in the computing world is a testament to its strong design principles,
modular architecture, and influence on the development of other operating systems. The operating
system’s flexibility and efficiency have made it a mainstay in server environments, academic
institutions, and software development, ensuring its continued importance in the world of
computing.

Check Your Progress

1. What are the key characteristics of the Unix operating system?
(Hint: Consider features like multitasking, security, portability, and the file system hierarchy.)

2. Explain the significance of Unix being written in the C programming language in 1973. How
did it impact the system's portability?

3. What is the Unix file system hierarchy, and how does it help in organizing files and
directories?

4. How does Unix's security model differ from other operating systems? Explain the role of user
permissions and file ownership in Unix security.

5. Describe the difference between multitasking and multithreading in Unix. How do these
concepts contribute to the system's performance?

6. What is the role of the shell in Unix, and how does shell scripting improve system
administration? Provide an example of a task that can be automated with a shell script.

44

7. What were the main developments during the evolution of Unix from its creation in 1969 to
the release of Unix Version 7 in 1979?

8. How did the Berkeley Software Distribution (BSD) and AT&T's System V contribute to Unix’s
development in the 1980s?

9. What is the GNU project, and how did it contribute to the creation of modern Unix-like
operating systems such as Linux?

10. Why is Unix still relevant today, and how have its principles influenced other operating
systems, including Linux and macOS?

Unit 13: Processes in Unix

This unit delves deeper into Unix processes, focusing on how they are created, managed, and
terminated. Processes are essential components of Unix, as they enable multitasking and effective
resource management. A solid understanding of process management in Unix is crucial for system
administrators, software developers, and anyone working with Unix-like operating systems.

13.1 Introduction

In Unix, a process is a program that is being executed by the system. A process includes the
program’s code, its current activity, and its associated resources (such as memory, CPU time, and file
descriptors). Each process in Unix is an instance of a running program, and processes interact with
the operating system through system calls.

➢ Process ID (PID): Every process in Unix has a unique identifier known as the Process ID (PID).
The PID helps the operating system track and manage processes. The parent process can
spawn child processes, and each child process receives a unique PID. When a process is
terminated, its PID is returned to the system to be reused by future processes.

➢ Parent and Child Processes: Unix operates on a hierarchical process model. When a process
creates another process, the new process is known as a child process, and the original
process is called the parent process. The relationship between parent and child processes is
crucial for process management, especially when handling resources and process

6666

termination.

➢ Process States: A process can be in one of several states, and the operating system changes
the state of processes depending on resource availability, scheduling, and execution. The
common process states are:

1. Running: The process is currently being executed by the CPU.

2. Sleeping: The process is waiting for some event, such as I/O completion or resource
availability.

3. Stopped: The process has been stopped by a signal or by the user.

4. Zombie: The process has terminated, but its parent has not yet read its exit status.
The process remains in the system until the parent collects the exit status.

5. Orphan: A process whose parent has terminated. The init process typically adopts
orphaned processes.

➢ Process Control Block (PCB): The PCB is a data structure that stores important information
about each process, such as its state, PID, priority, program counter, memory usage, open
file descriptors, and more. The kernel uses the PCB to track and manage processes.

13.2 Process Management System Calls

Unix provides several system calls to allow programs to create, manage, and terminate processes.
These system calls are fundamental for process control and inter-process communication. Some of
the most important process management system calls include:

➢ fork(): The fork() system call is used to create a new process. It is the primary method for
process creation in Unix. When a process calls fork(), it creates an almost identical copy of
itself (a child process). Both the parent and child processes continue execution from the
point where fork() was called. The fork() call returns a value that helps distinguish the parent
process from the child process. The parent process receives the child’s PID, while the child
process receives a return value of 0.

➢

➢

➢

exec(): The exec() system call allows a process to replace its current image (code and data)
with a new program. This call does not create a new process; instead, it transforms the
current process into another program. The exec() call is often used after fork() to execute a
different program in the child process. For example, a shell might use fork() to create a new
process and then use exec() to run a command in that process.

wait(): The wait() system call is used by a parent process to wait for one of its child processes
to finish execution. This is particularly useful for ensuring that the parent can collect the exit

8383

status of the child process. If a process does not use wait(), it may leave child processes as
"zombies" in the system. The parent receives information about the child process’s
termination status through this call.

exit(): The exit() system call terminates the current process. It passes an exit status back to
58

the parent process, which can be used to determine whether the process completed
successfully or encountered errors. After a process calls exit(), the operating system releases
any resources associated with that process, and the process is removed from the process
table.

➢

➢

getpid() and getppid(): The getpid() system call returns the PID of the current process.
Similarly, getppid() returns the PID of the parent process. These calls are useful for inter-
process communication and for debugging or logging process-related information.

kill(): The kill() system call sends a signal to a process. Signals are used for inter-process
communication and can control the behavior of a process, such as terminating it, stopping it,
or resuming its execution. The most common signal is SIGKILL, which immediately
terminates a process, and SIGSTOP, which pauses it.

➢

➢

nice() and renice(): The nice() and renice() system calls are used to change the priority of a
process. A process’s priority determines the amount of CPU time it receives. Lower priority
processes are assigned a higher "nice" value, while higher priority processes are assigned a
lower nice value.

pause(): The pause() system call is used to put a process to sleep until a signal is received. It
is often used by processes that need to wait for events or messages from other processes or
the kernel.

13.3 Implementation of Processes

The implementation of processes in Unix is managed by the operating system kernel, which
6666

coordinates process scheduling, execution, and termination. Key components involved in the
implementation of processes include:

➢ Process Table: The kernel maintains a table of all processes, known as the process table. This
table contains an entry for each running process and stores information about its state, PID,

4040

memory allocation, scheduling priority, and more. The process table is essential for the
operating system to manage processes efficiently.

➢ Process Scheduler: The process scheduler is responsible for determining which process
111

should execute next. The scheduler uses different scheduling algorithms to allocate CPU
time to processes. Common algorithms include:

1. Round Robin (RR): Each process is assigned a fixed time slice (quantum). When the
time slice expires, the scheduler moves the next process to the CPU.

2. First-Come-First-Served (FCFS): Processes are scheduled in the order they arrive.
6666

3. Shortest Job First (SJF): The process with the smallest estimated runtime is
scheduled next.

4. Priority Scheduling: Processes are assigned priorities, and the scheduler executes the
process with the highest priority.

➢

➢

➢

Context Switching: The operating system uses context switching to switch between
processes. A context switch involves saving the state of the current process (e.g., the
program counter, CPU registers) and restoring the state of the next process to run. This
allows Unix to execute multiple processes concurrently, giving the appearance of
multitasking.

Signals: Unix uses signals as a form of inter-process communication (IPC). A signal is a
notification sent to a process, informing it of events or requesting it to perform a specific
action. For example, the signal SIGTERM requests a process to terminate gracefully, while
SIGSTOP pauses the process’s execution. A process can handle signals by defining signal
handlers, or it can choose to ignore them.

Zombie and Orphan Processes: When a child process terminates, its parent process must
collect its exit status by using the wait() system call. If the parent does not collect the status,
the child process becomes a zombie, occupying an entry in the process table. Zombie
processes do not consume CPU resources but still take up space in the process table. An
orphan process occurs when a parent process terminates before its child. The init process
(PID 1) automatically adopts orphaned processes and is responsible for cleaning them up.

➢ Process Lifecycle: The lifecycle of a process in Unix includes several stages:

Creation: A new process is created using fork().

Execution: The process executes, potentially calling exec() to run a different program.

Termination: When the process finishes, it calls exit() to terminate.

Cleanup: The kernel releases the process’s resources, and the parent process collects the
exit status through wait().

13.4 Unit Summary

In this unit, we covered the key concepts of processes in Unix, including how processes are created,
managed, and terminated. The fork() system call allows processes to create child processes, while
exec() replaces the current process image with a new program. wait() and exit() are used for process
synchronization and termination.

We also explored the components involved in the implementation of processes, including the
process table, process scheduler, context switching, and signals. Understanding how Unix manages
processes is essential for effective system administration and development. By efficiently managing
processes, Unix can support multitasking and provide a stable environment for executing programs
concurrently.

Unix’s process management system allows for robust handling of multiple processes and the ability
to share resources while ensuring each process operates independently, making it a powerful system
for modern computing environments.

Check Your Progress

1. What is the definition of a process in Unix, and what key information does the operating
system maintain about each process?

2. Explain the difference between a parent process and a child process in Unix. How is the
relationship between them important for process management?

3. What are the different states a process can be in within a Unix operating system? Provide
examples of each state.

4. Describe the role of the Process Control Block (PCB) in process management. What kind of
information does it store?

5. How does the fork() system call work in Unix? What happens in the parent and child
processes after fork() is called?

6. What is the purpose of the exec() system call in Unix? How does it differ from fork()?

7. What is a zombie process in Unix, and how does it occur? What happens if the parent
process does not collect the exit status of its child process?

8. Explain the role of the process scheduler in Unix. What scheduling algorithms are typically
used to determine which process should execute next?

9. What is context switching, and why is it necessary for multitasking in Unix?

10. How does the kill() system call work in Unix? Give an example of how it might be used to
control a process.

Unit 14: Memory Management in Unix

This unit explores how memory is managed in Unix systems, from allocation to process memory
management. Memory management is a critical function of the operating system, allowing efficient
use of system resources. Understanding this helps ensure system performance, stability, and
security.

14.1 Introduction

Memory management is a key component of any modern operating system, and Unix is no
exception. It is responsible for efficiently managing the system's memory resources, ensuring that
processes have the memory they need to execute, and that memory is used optimally without
conflicts.

The core tasks of memory management in Unix include allocating and deallocating memory,
ensuring that processes have sufficient memory for their execution and reclaiming memory when it
is no longer needed. Memory protection is also crucial to prevent processes from accessing each
other’s memory spaces, ensuring data integrity and security. Another critical function is virtual
memory, which enables processes to use more memory than is physically available by swapping data
to and from disk storage. The operating system also deals with memory fragmentation to ensure
that memory is used efficiently.

Unix uses various techniques to manage memory, including paging, segmentation, and demand
paging. The operating system provides mechanisms for both physical memory (RAM) and virtual
memory management.

14.2 Memory Allocation

Memory allocation refers to how memory is assigned to processes and other system components. In
Unix, memory allocation is handled in several ways.

Static memory allocation is done at compile-time and cannot be changed during runtime. It is used
22

for global variables and other data that is allocated once and used throughout the execution of the
program. Unlike static memory, dynamic memory is allocated at runtime. Programs can request
memory using system calls like malloc() and free it with free() when no longer needed. This approach
gives flexibility, allowing memory to be used as needed during the execution of a process.

Unix allocates memory in two main areas: stack and heap memory. Stack memory is used for local
variables and function calls. It is automatically managed by the system, with memory being allocated
and deallocated as functions are called and return. Heap memory is dynamically allocated memory
that is managed by the program itself. It is used for objects and data structures that require

flexibility, such as linked lists, arrays, and more. The programmer needs to explicitly allocate and free
memory in the heap.

Modern Unix systems use paged memory allocation. In a system using paging, memory is divided
into fixed-size blocks called pages. The operating system manages these pages by swapping them in
and out of physical memory as needed. Paging helps reduce memory fragmentation by allowing
memory to be used in smaller, manageable chunks. Segmentation is another memory management
technique that divides memory into variable-length segments. Each segment corresponds to a
logical division of a program (e.g., code, data, stack). Although segmentation is more flexible than
paging, it can lead to external fragmentation.

Unix supports virtual memory, which enables a program to use more memory than is physically
available. The operating system achieves this by swapping parts of the program’s memory to
secondary storage (like a hard disk) and swapping it back into physical memory as needed. Virtual
memory allows for more efficient use of physical memory and helps prevent system crashes caused
8383

by running out of RAM.

14.3 Process Memory Management

Each process in Unix has its own memory space. Process memory management is essential for
6767

isolating processes from each other and ensuring that each process has enough memory to execute.

Every process in Unix has its own address space, which is a range of memory addresses that it can
6161

access. The operating system ensures that each process's address space is isolated from other
4040

processes for security and stability.

Unix provides the ability to map files and devices into memory using the mmap() system call. This
allows processes to access files or devices as if they were part of the process’s memory space.
Memory mapping is an efficient way to manage large files or shared memory between processes.

One of the key techniques used in Unix memory management is demand paging. With demand
paging, pages of memory are only loaded into physical memory when they are needed, rather than
preloading all pages into memory. This reduces the system's memory requirements and speeds up
the process of loading programs.

When the system runs low on physical memory, the operating system can use a portion of the hard
disk as swap space. Swap space acts as an extension of physical memory, allowing the system to
continue running processes even when RAM is exhausted. However, since accessing the hard disk is
much slower than accessing RAM, excessive swapping can degrade system performance.

Unix implements memory protection mechanisms to ensure that processes do not interfere with
each other’s memory space. Each process has its own protected memory area, and any attempt to

98

access memory outside of its allocated space results in a segmentation fault, which typically causes
the process to terminate. This isolation prevents bugs or malicious actions from corrupting other
processes or the operating system itself.

Unix allows multiple processes to share memory through shared memory regions. Shared memory
can be mapped into the address spaces of multiple processes, which allows for efficient inter-
process communication (IPC). However, access to shared memory must be carefully managed to
prevent race conditions and data corruption.

In some Unix-based systems or applications, memory management includes garbage collection.
Garbage collection is the process of automatically identifying and freeing memory that is no longer

being used by the program. This is often used in programming languages with automatic memory
management (e.g., Java, Python) but may also be employed at the system level in certain
environments.

14.4 Unit Summary

In this unit, we explored how memory is managed in Unix systems. We examined different memory
allocation methods, including static and dynamic memory allocation, stack and heap memory, and
paging. We also discussed how Unix uses virtual memory to give processes the illusion of having
more memory than is physically available and how the operating system uses swapping and paging
to manage memory efficiently.

In terms of process memory management, we learned that each process in Unix has its own address
6161

space, which is managed by the operating system to ensure isolation between processes.
6666

Techniques such as demand paging, memory protection, and shared memory are used to improve
system efficiency and security.

Effective memory management is crucial for the stability and performance of Unix systems,
especially when handling many processes or running memory-intensive applications. The operating
system’s ability to efficiently allocate and manage memory resources ensures that it can support
multitasking and deliver high performance in a variety of environments.

Understanding memory management in Unix is essential for developers and system administrators
to optimize resource usage and ensure that systems run efficiently and reliably.

Check Your Progress

1. What are the primary responsibilities of memory management in Unix operating systems?

2. Explain the difference between static and dynamic memory allocation in Unix. How does each type
of allocation work?

3. What are the two main areas where Unix allocates memory for processes, and how are they
managed differently?

4. Describe the concept of paging in Unix memory management. How does it help in reducing memory
fragmentation?

5. What is the role of virtual memory in Unix, and how does it help processes use more memory than
is physically available?

6. How does Unix handle memory protection to prevent processes from accessing each other’s
memory spaces?

7. Explain what demand paging is and how it benefits Unix systems in terms of memory management.

8. What is swap space in Unix, and when is it used? How does it affect system performance?

9. How does shared memory in Unix work, and what advantages does it offer for inter-process
communication?

10. What is garbage collection, and how is it related to memory management in some Unix-based
systems?

Unit 15: The Unix File System

This unit introduces the Unix file system, which plays a crucial role in managing and organizing data
storage. Understanding the structure and types of files in the Unix file system is essential for

117

efficient interaction with the operating system and for performing file management tasks.

15.1 Introduction

The Unix file system (UFS) is the core system used by Unix-based operating systems to store and
manage files. It provides a hierarchical structure for organizing data, making it easy to access and
manage files. In Unix, everything is considered a file, including devices, directories, and even
processes. This uniformity simplifies file management across the system.

Unix is built on the concept of a tree-like structure where files and directories are organized in a
27

hierarchical manner. The root directory, denoted by /, is the topmost level of the directory structure.
All other files and directories branch out from the root directory. Each directory can contain files or
other directories, enabling the creation of a flexible and organized file system.

Unix employs a combination of inodes, directories, and blocks to manage files and directories
efficiently. An inode contains metadata about a file (e.g., its size, permissions, and location on the
disk), while directories act as containers for file names, linking them to their respective inodes.

15.2 File System Architecture

The architecture of the Unix file system is designed to allow efficient storage, retrieval, and
organization of files. The structure is divided into several components.

An inode is a data structure that stores metadata about a file. Each file in Unix is associated with an
inode that contains important information, such as the file's size, owner, permissions, and the
physical location of the file's data blocks on the disk. However, an inode does not contain the file
name; instead, the file name is stored in the directory entry that links to the inode.

A directory is a special type of file that contains entries mapping filenames to their corresponding
inodes. Directories provide a way to organize files in a hierarchical structure. Each directory can
contain files or other directories, forming a tree-like structure. The root directory is the starting
point, denoted as /, and all other files and directories are organized beneath it.

Files are stored in blocks of data on the disk. These blocks are the actual storage units where the
content of the file is stored. Inodes point to these data blocks, which contain the file's actual data.
The file system ensures that data is stored in non-contiguous blocks to improve space efficiency and
allow for dynamic growth.

Unix allows the use of multiple file systems. To use a file system, it must be mounted at a specific
location within the existing directory hierarchy. For example, an external drive or a network file
system can be mounted into a subdirectory, allowing users to access it as if it were part of the local
file system.

The Unix file system is organized in a tree structure, with the root directory (/) at the top. Beneath it,
directories like /home, /bin, /usr, and /tmp provide structure and organization. The /home directory
is typically used for user home directories, while /bin contains essential binary files (executables),
and /usr houses additional software packages and libraries.

15.3 File Types

Unix supports several types of files, each designed for different purposes. The most common types
include:

A regular file is the most common file type, used to store data or programs. These can contain text,
binary data, or executable code. Regular files are denoted by a simple file name and are the files
most users interact with regularly.

A directory file is a special type of file that contains a list of other files and directories. It is used to
organize the file system into a hierarchical structure. Each directory has an entry for each file or
subdirectory it contains, mapping the name to the corresponding inode.

A symbolic link is a type of file that acts as a reference to another file or directory. It stores the path
to the target file or directory and redirects any access to the link to the actual target. Symbolic links
are useful for creating shortcuts or for pointing to files or directories that may change locations.

A hard link is a direct reference to the inode of a file. Unlike symbolic links, hard links do not store
the path to a file but rather link directly to its inode. Multiple hard links can exist for a single file, and

6767

deleting one hard link does not delete the file itself if other links remain. Hard links are typically used
for data redundancy or for organizing files.

Unix also supports special files, such as device files, which represent hardware devices like printers,
hard drives, or terminals. These files allow processes to interact with the hardware through file
system operations, such as reading or writing to a device.

FIFO (named pipe) files are used for inter-process communication. They allow data to flow from one
process to another in a first-in, first-out (FIFO) manner. These are often used in scripts or programs
that need to pass data between processes in real-time.

Socket files are used for network communication. They provide a way for processes to communicate
over a network, often used in client-server applications.

15.4 Unit Summary

In this unit, we explored the Unix file system, which provides the structure and mechanisms for
managing files and directories. We discussed the file system architecture, which includes inodes,
directories, data blocks, and the process of mounting file systems. The hierarchy of the Unix file
system allows for the organization of files in a tree-like structure, with the root directory serving as
the starting point.

We also examined the different types of files supported by Unix, including regular files, directory
files, symbolic and hard links, special files, FIFO files, and socket files. Each file type has its specific

use case, allowing Unix to handle a wide variety of tasks and interact with devices, processes, and
external systems.

The Unix file system’s organization and flexibility make it a powerful tool for managing data, allowing
92

users and administrators to organize files efficiently and access them in a straightforward, consistent
manner. Understanding the Unix file system is essential for anyone working with Unix-based

4848

operating systems, whether for system administration, software development, or general file
management tasks.

Check Your Progress

1. What is the Unix file system, and why is it important for managing files and data?

2. Explain the concept of the root directory in the Unix file system. How is it different from
other directories?

3. What is an inode, and what kind of information does it store about a file in the Unix file
system?

4. How do directories in Unix function, and what role do they play in organizing the file
system?

5. What is the difference between regular files and special files in Unix?

6. Describe the purpose of symbolic links and hard links in Unix. How do they differ in their
functionality?

7. What are FIFO (named pipe) files, and in what scenarios are they typically used in Unix
systems?

8. How does the Unix file system handle multiple file systems? What is the process of mounting
a file system in Unix?

9. What are data blocks in the Unix file system, and how are they used in the storage of file
data?

10. How does the Unix file system's hierarchical structure improve file organization and system
management?

Unit 16: Security in Unix

This unit focuses on the security mechanisms employed by Unix-based operating systems. It covers
how Unix ensures the protection of files, directories, and resources from unauthorized access, as
well as the tools and methods available for securing the system.

16.1 Introduction

Security is a critical aspect of any operating system, and Unix has built-in security features that help
114

protect data, files, and system resources from unauthorized access or malicious activity. The Unix
security model is based on the principle of least privilege, ensuring that users and processes have
only the minimum level of access necessary to perform their tasks.

Unix implements several layers of security, including user authentication, file permissions, access
control, and auditing. By effectively managing access to system resources, Unix helps maintain the
confidentiality, integrity, and availability of data. System administrators are key to configuring
security settings, monitoring user activity, and enforcing security policies to protect the system.

A key component of Unix security is its file and directory permissions model, which allows
administrators to control who can read, write, or execute files. Additionally, Unix provides several
4848

tools to enhance security, including user authentication mechanisms like passwords and encryption.

16.2 Unix File and Directory Security

Unix provides robust security mechanisms to protect files and directories from unauthorized access.
These mechanisms are based on file permissions and ownership.

In Unix, each file and directory is associated with an owner, a group, and a set of permissions. The
owner is typically the user who created the file, while the group is a set of users who share certain
access rights. Permissions define what actions can be performed on the file or directory by the
owner, group, and other users.

There are three basic types of permissions in Unix:
124

1. Read (r): Allows a user to view the contents of the file or directory.

2. Write (w): Allows a user to modify the contents of the file or directory.

3. Execute (x): Allows a user to execute the file (if it is a program) or access the directory.

Each file or directory has three sets of permissions:

1. Owner permissions (permissions for the file's owner)

2. Group permissions (permissions for the file's group)

3. Other permissions (permissions for all other users)

The permissions are represented as a string of 10 characters, with the first character indicating the
47

type of file (e.g., a hyphen for a regular file, d for a directory). The remaining nine characters
represent the read, write, and execute permissions for the owner, group, and others.

In addition to file permissions, Unix provides the ability to change ownership and assign different
permissions to users and groups using commands like chown, chmod, and chgrp. The chmod
command is used to modify file permissions, while chown allows users to change the owner of a file,
and chgrp changes the group ownership.

16.3 Protection Mechanism in Unix

Unix employs several protection mechanisms to enhance system security and prevent unauthorized
access. These mechanisms include:

1. User Authentication: In Unix, users are required to authenticate themselves before accessing
the system. Authentication typically involves providing a username and password. These
credentials are checked against the system's /etc/passwd and /etc/shadow files, which store
user information and encrypted password data. Additionally, Unix supports more advanced
authentication methods, such as two-factor authentication (2FA) and biometrics, in some
environments.

2. Access Control Lists (ACLs): Unix systems can be configured to use Access Control Lists (ACLs)
to provide more granular control over file and directory permissions. ACLs allow
112

administrators to define permissions for specific users and groups beyond the standard
123

owner, group, and other categories. This enables more detailed control over who can access
specific resources and what actions they can perform.

3. SUID, SGID, and Sticky Bits: Unix includes special permission bits, such as the Set User ID
(SUID), Set Group ID (SGID), and Sticky Bit. These special bits modify the behavior of files and
directories:

a. SUID: When set on an executable file, the file runs with the permissions of the file’s
owner, rather than the permissions of the user running the file. This is typically used
for system utilities that need elevated privileges.

b. SGID: When set on an executable file, the file runs with the permissions of the group
associated with the file. When set on a directory, files created in that directory
inherit the group of the directory, rather than the user’s default group.

c. Sticky Bit: When set on a directory, the sticky bit ensures that only the owner of a
file can delete or rename it, even if others have write permissions for the directory.
This is commonly used in directories like /tmp, where many users have write access.

4. File Integrity and Auditing: Unix provides tools for maintaining file integrity and monitoring
system activity. File integrity can be monitored using checksums and cryptographic hash
functions, while auditing tools allow system administrators to track user actions and detect
suspicious behaviour. The audited service is often used to log security-relevant events and
produce reports for administrators.

5. Encryption and Secure Communication: To protect sensitive data, Unix systems support file
and disk encryption. Tools like gpg (GNU Privacy Guard) are commonly used to encrypt files,
ensuring that even if they are intercepted or accessed by unauthorized users, the data
remains protected. Additionally, secure communication protocols, such as SSH (Secure

115

Shell), are used to encrypt remote access and communication between systems.

16.4 Unit Summary

In this unit, we examined the security mechanisms in Unix, focusing on file and directory security,
protection mechanisms, and tools available for system administrators to enhance system security.
Unix uses file permissions to manage access to files and directories, ensuring that only authorized

75

users can perform certain actions. The file system allows administrators to modify permissions and
ownership using commands like chmod, chown, and chgrp.

We also discussed advanced protection mechanisms such as user authentication, Access Control
Lists (ACLs), and special permission bits like SUID, SGID, and the sticky bit. These mechanisms help
prevent unauthorized access and ensure that system resources are used securely. Tools for file
integrity monitoring, auditing, and encryption provide additional layers of security to protect
sensitive data and system activity.

Security in Unix is essential for protecting both the system and user data. Administrators play a key
role in configuring security settings, monitoring the system, and enforcing policies to maintain a
secure environment. By understanding these security mechanisms, users and administrators can
better safeguard the Unix system from potential threats and vulnerabilities.

Check Your Progress

1. What are the key principles of Unix security, and how does the concept of least privilege
apply in Unix systems?

2. Explain the role of file ownership in Unix and how it affects file security.

3. What are the basic file permissions in Unix, and how do they control access to files and
directories?

4. How does the Unix file permission model allow administrators to control access for different
users and groups?

5. What is the function of the chmod, chown, and chgrp commands in managing file and
directory security in Unix?

6. How do Access Control Lists (ACLs) extend the basic Unix file permission model, and in what
scenarios might they be used?

7. What are SUID, SGID, and Sticky Bits in Unix, and how do they modify the behavior of files
and directories?

8. How does user authentication work in Unix, and what files are used to store user
credentials?

9. What are the tools available in Unix to ensure file integrity and monitor system activity for
security purposes?

10. How does encryption, such as the use of SSH or gpg, contribute to the security of data and
communication in Unix systems?

